当前位置: 首页 > news >正文

样式网站wordpress主题访问慢

样式网站,wordpress主题访问慢,开发小程序好的公司,图标设计网站Spark 中的内存管理和资源管理模型 Executor 进程作为一个 JVM 进程#xff0c;其内存管理建立在 JVM 的内存管理之上#xff0c;整个大致包含两种方式#xff1a;堆内内存和堆外内存。 一个 Executor 当中的所有 Task 是共享堆内内存的。一个 Work 中的多个 Executor 中的…Spark 中的内存管理和资源管理模型 Executor 进程作为一个 JVM 进程其内存管理建立在 JVM 的内存管理之上整个大致包含两种方式堆内内存和堆外内存。 一个 Executor 当中的所有 Task 是共享堆内内存的。一个 Work 中的多个 Executor 中的多个 Task 是共享堆外内存的。 Executor 内存划分 堆内内存和堆外内存 大数据领域两个比较常见的内存优化方案 引入堆外内存内存池化管理 作为一个 JVM 进程Executor 的内存管理建立在 JVM 的内存管理之上Spark 对 JVM 的堆内Onheap空间进行了更为详细的分配以充分利用内存。同时Spark 引入了堆外Off-heap内存使之可以直接在工作节点的系统内存中开辟空间进一步优化了内存的使用。 没有堆外内存之前min n, max m (假设 executor 的内存 x executor 上运行的 Task 的数量 y则每个 Task 均分得到的资源应该是 m x / y , 设 n m / 2Task 能否运行取决于是否能申请到大小为 n 的初始内存)。每个 Task 能使用的资源使用量的区间【m/2, m】m x/y引入堆外内存之后堆外内存的大小z, min n max m z。每个 Task 能使用的资源使用量的区间【m/2, m z】 Spark 对堆内内存的管理是一种逻辑上的规划式的管理因为对象实例占用内存的申请和释放还是都由 JVM 完成Spark 只能在申请后和释放前记录这些内存。堆内内存的大小由 Spark 应用程序启动时的 --executor-memory 或 spark.executor.memory 参数配置。 存储内存存储 cache RDD 数据 和 广播变量数据代码注释used for caching andpropagating internal data across the cluster执行内存Shuffle 过程中占用的内存代码注释used for computation in shuffles, joins,sorts and aggregationsother 空间应用程序对象实例占用内存 堆内内存On-Heap Memory Executor Memory 由 spark.executor.memory 配置或者在提交的时候使用 --executormemory 进行配置。Reserved Memory 这个内存是写死了的默认 300MB但也可以修改前提是在测试环境下通过修改 spark.test.reservedMemory 参数对这个值进行修改这块内存用于存储 Spark 内部的对象。Usable Memory Executor Memory - Reserved Memory 就是可用内存。Unified Memory Usable Memory * spark.memeory.fraction 比例值约等于 UsableMemory * 60%这个内存由 Storage 和 Execution 共用这两个之间有一个动态调节机制.Storage Memory Unified Memory * spark.storage.storageFraction 比例值约等于 UnifiedMemory * 50%这块内存主要是用来存储一些缓存数据的比如 cache()persist()RDD 的缓存数据等。Executor Memory Unified Memory * (1 - spark.storage.storageFraction 比例值)这块内存用于存储 ShuffleJoinSortAggregate 等计算过程中的临时数据。User Memory Usable Memory * (1 - spark.memeory.fraction 比例值)这块内存用于保存 RDD 转换操作时需要的一些数据如父子 RDD 的依赖关系。 堆外内存Off-Heap Memory Task 能申请到的内存 spark.executor.cores 参数值就是 Spark 程序运行时得到的核数以下简称为 N每个 Task 能够分配到的内存大小为 1/2N ~ 1/N举例N4分配到的内存为 10G那内存大小为 1.25G ~ 2.5G。 静态内存管理模型StaticMemoryManager 这种内存模型最大的问题是不熟悉 Spark 这种内存分配的开发者无法根据数据规模和任务规模做出相应的合理配置容易造成旱的旱死涝的涝死的水火两重天局面。Spark 为了兼容老版本应用程序的目的仍然保留了这种内存模型的实现和使用。 统一内存管理模型UnifiedMemoryManager Spark-1.6 之后引入的统一内存管理机制与静态内存管理的区别在于存储内存和执行内存共享同一块空间可以动态占用对方的空闲区域。凭借统一内存管理机制Spark 在一定程度上提高了堆内和堆外内存资源的利用率降低了开发者维护 Spark 内存的难度。 如果存储内存已用完可以占用执行内存中未用的内存。但是执行内存没有足够内存可用的时候需要存储内存释放归还内存。如果执行内存已用完可以占用存储内存中未用的内存。但是存储内存没有足够内存可用的时候执行内存占用的存储内存是不会归还的。如果存储内存和执行内存都不足的时候则他们会使用磁盘。 Spark MemoryManager 内存管理器 Spark BlockManager 资源管理机制原理 Spark-2.x 版本的 BlockManager 体系架构图 Spark-3.x 版本的 BlockManager 体系架构图 总共有四大类操作 往本地存储数据往远程复制数据副本从本地读取数据从远程拉取数据 Spark RDD 持久化机制 和 Checkpoint 机制 checkpoint 与 presist 持久化的区别 持久化将数据保存到 cache 中rdd 的 lineage 不变checkpoint 执行完成 rdd 已经没有了依赖关系同时把父 rdd 设置成了 CheckpointRDDrdd 的lineage 改变。持久化的数据存储在内存或磁盘随着 Executor 的关闭BlockManager 会被 Stop则 cache 的数据会被清除checkpoint 通常选择的是高容错性的文件系统如 HDFS数据的安全性非常高。RDD 持久化不影响 job 执行效率但是 RDD checkpoint 会使这个 Job 重复执行一次这个效率低所以一般建议 Spark cache 和 checkpoint 联合使用。
http://www.zqtcl.cn/news/210515/

相关文章:

  • 建设银行官网官方网站学习网页制作的网站
  • 开发网站需要什么硬件今年最流行的装修风格
  • 门户网站建设中标结果百度资讯指数
  • 定制企业网站开发公司网站建设的6个基本步骤
  • 网站建设与维护案列网站作品怎么做
  • 茂名放心营销网站开发seo收费
  • 旅游网站品牌建设本地使用宝塔安装wordpress
  • 专门做外链的网站制作论坛类网站模板免费下载
  • 靖江建设行业协会网站投资做网站
  • 做网站视频背景潍坊网站制作建设
  • 深圳市官网网站建设哪家好百度抓取网站登录
  • 免费做cpa单页网站友情链接买卖代理
  • 免费网站建站排名中国最大的软件公司
  • 码云pages做静态网站广西建设培训网
  • 建设网站需要花钱吗网站seo方案策划书
  • 德阳网站怎么做seo陈木胜个人资料
  • 电子规划书商务网站建设wordpress主机推荐
  • wordpress设置多站点html5开发手机app
  • 移动互联和网站开发哪个好做推广便宜的网站有哪些
  • 极速网站建设定制价格微信公众号运营助手
  • .net制作网站开发教程在线修图编辑器
  • 哪些网站可以做详情页聊城高新区建设局网站
  • 湖南网站优化代运营山东建设厅证件查询网址
  • 以百度云做网站空间浙江外贸网站建设
  • 南通网站建设推广专家wordpress 信息流 主题
  • 网站培训机构有哪些大学生做企业网站
  • 网站培训班有哪些课程做的好的大学生旅行有哪些网站好
  • 昌江县住房和城乡建设局网站佛山建设网站制作
  • 做网站 图片 文件夹 放哪儿北京模板网站建设
  • 网站制作公司哪家正规注册工程公司名称大全