做兼职上什么网站,哈尔滨市建筑企业管理站,网站建设属于技术活吗,校友网站建设的意义准备初始数据
mean_shape
mean_shape就是训练图片所有ground_truth points的平均值.那么具体怎么做呢#xff1f;是不是直接将特征点相加求平均值呢#xff1f; 显然这样做是仓促和不准确的。因为图片之间人脸是各式各样的#xff0c;收到光照、姿势等各方面的影响。因此…准备初始数据
mean_shape
mean_shape就是训练图片所有ground_truth points的平均值.那么具体怎么做呢是不是直接将特征点相加求平均值呢 显然这样做是仓促和不准确的。因为图片之间人脸是各式各样的收到光照、姿势等各方面的影响。因此我们求取平均值应该在一个相对统一的框架下求取。如下先给出matlab代码:
function mean_shape calc_meanshape(shapepathlistfile)fid fopen(shapepathlistfile);
shapepathlist textscan(fid, %s, delimiter, \n);if isempty(shapepathlist)error(no shape file found);mean_shape [];return;
endshape_header loadshape(shapepathlist{1}{1});if isempty(shape_header)error(invalid shape file);mean_shape [];return;
endmean_shape zeros(size(shape_header));num_shapes 0;
for i 1:length(shapepathlist{1})shape_i double(loadshape(shapepathlist{1}{i}));if isempty(shape_i)continue;endshape_min min(shape_i, [], 1);shape_max max(shape_i, [], 1);% translate to origin pointshape_i bsxfun(minus, shape_i, shape_min);% resize shapeshape_i bsxfun(rdivide, shape_i, shape_max - shape_min);mean_shape mean_shape shape_i;num_shapes num_shapes 1;
endmean_shape mean_shape ./ num_shapes;img 255 * ones(500, 500, 3);drawshapes(img, 50 400 * mean_shape);endfunction shape loadshape(path)
% function: load shape from pts file
file fopen(path);
if file -1shape [];fclose(file);return;
end
shape textscan(file, %d16 %d16, HeaderLines, 3, CollectOutput, 2);
fclose(file);
shape shape{1};
end
解析: 公式表示:
{shapegt−[Region(1),Region(2)]}/[Region(3),Region(4)))]]⇒[0,1]×[0,1]
\{shape_{gt}-[Region(1),Region(2)]\}/[Region(3),Region(4)))]] \Rightarrow [0,1]\times[0,1]准备ΔSt\Delta S^t
我们知道3000FPS的核心思想是:
ΔStWtΦt(I,St−1)
\Delta S^t=W^t\Phi^t(I,S^{t-1}) 其中ΔStSgt−St\Delta S^t=S^{gt}-S^{t}为第t个阶段的残差而Φt(I,St−1)\Phi^t(I,S^{t-1})则为特征提取函数W为线性回归矩阵。由
《人脸配准坐标变换解析》我们可以看到所谓的ΔSt\Delta S^t需进行相似性变换而Φt(I,St−1)\Phi^t(I,S^{t-1})则不需要. 相似性变换的主要过程是: 先将StS^tS0S^0中心化变换再求解如下变换矩阵: S0cRStS^0=cRS^t,求解完cR后对ΔSt\Delta S^t施加同样的变换即St˜cRΔSt
\widetilde{S^t}=cR\Delta S^t.我们将使用变化后的St˜\widetilde{S^t}去求解线性回归矩阵W. 先贴代码: train_model.m 第103行起Param.meanshape S0(Param.ind_usedpts, :); %选取特定的landmarkdbsize length(Data);% load(Ts_bbox.mat);augnumber Param.augnumber; %为每张人脸选取的init_shape的个数for i 1:dbsize % initializ the shape of current face image by randomly selecting multiple shapes from other face images % indice ceil(dbsize*rand(1, augnumber)); indice_rotate ceil(dbsize*rand(1, augnumber)); indice_shift ceil(dbsize*rand(1, augnumber)); scales 1 0.2*(rand([1 augnumber]) - 0.5);Data{i}.intermediate_shapes cell(1, Param.max_numstage); %中间shapeData{i}.intermediate_bboxes cell(1, Param.max_numstage);Data{i}.intermediate_shapes{1} zeros([size(Param.meanshape), augnumber]); %68*2*augnumber(augnumber为第i图片设置的初始shape的个数)Data{i}.intermediate_bboxes{1} zeros([augnumber, size(Data{i}.bbox_gt, 2)]); %augnumber*4Data{i}.shapes_residual zeros([size(Param.meanshape), augnumber]); %shapes_residual为shape 残差 维数:68*2*augnumberData{i}.tf2meanshape cell(augnumber, 1);Data{i}.meanshape2tf cell(augnumber, 1);% if Data{i}.isdet 1% Data{i}.bbox_facedet Data{i}.bbox_facedet*ts_bbox;% end % 如下一段的意思是如果augnumber1表明每个图片的Init_shape只有一个因此这要设置成mean_shape即可,这时你会发现Data{i}.tf2meanshape{1}其实就是% 单位矩阵因为他是从mean_shape转化到mean_shape。后面就不一样了.%对于augnumber1的其他init_shape将采用平移、旋转、% 缩放等方式产生更多的shape也可以从其他图片的shape中挑选shapefor sr 1:params.augnumberif sr 1% estimate the similarity transformation from initial shape to mean shape% Data{i}.intermediate_shapes{1}(:,:, sr) resetshape(Data{i}.bbox_gt, Param.meanshape);% Data{i}.intermediate_bboxes{1}(sr, :) Data{i}.bbox_gt;Data{i}.intermediate_shapes{1}(:,:, sr) resetshape(Data{i}.bbox_facedet, Param.meanshape);Data{i}.intermediate_bboxes{1}(sr, :) Data{i}.bbox_facedet;%将mean shape reproject face detection bbox上meanshape_resize resetshape(Data{i}.intermediate_bboxes{1}(sr, :), Param.meanshape); %meanshape_resize与 Data{i}.intermediate_shapes{1}(:,:, sr) 是相同的%计算当前的shape与mean shape之间的相似性变换 Data{i}.tf2meanshape{1} fitgeotrans(bsxfun(minus, Data{i}.intermediate_shapes{1}(1:end,:, 1), mean(Data{i}.intermediate_shapes{1}(1:end,:, 1))), ...(bsxfun(minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :)))), NonreflectiveSimilarity);Data{i}.meanshape2tf{1} fitgeotrans((bsxfun(minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :)))), ...bsxfun(minus, Data{i}.intermediate_shapes{1}(1:end,:, 1), mean(Data{i}.intermediate_shapes{1}(1:end,:, 1))), NonreflectiveSimilarity);% calculate the residual shape from initial shape to groundtruth shape under normalization scaleshape_residual bsxfun(rdivide, Data{i}.shape_gt - Data{i}.intermediate_shapes{1}(:,:, 1), [Data{i}.intermediate_bboxes{1}(1, 3) Data{i}.intermediate_bboxes{1}(1, 4)]);% transform the shape residual in the image coordinate to the mean shape coordinate[u, v] transformPointsForward(Data{i}.tf2meanshape{1}, shape_residual(:, 1), shape_residual(:, 2)); Data{i}.shapes_residual(:, 1, 1) u;Data{i}.shapes_residual(:, 2, 1) v; else% randomly rotate the shape % shape resetshape(Data{i}.bbox_gt, Param.meanshape); % Data{indice_rotate(sr)}.shape_gtshape resetshape(Data{i}.bbox_facedet, Param.meanshape); % Data{indice_rotate(sr)}.shape_gt%根据随机选取的scalerotationtranslate计算新的初始shape然后投影到bbox上if params.augnumber_scale ~ 0shape scaleshape(shape, scales(sr));endif params.augnumber_rotate ~ 0shape rotateshape(shape);endif params.augnumber_shift ~ 0shape translateshape(shape, Data{indice_shift(sr)}.shape_gt);endData{i}.intermediate_shapes{1}(:, :, sr) shape;Data{i}.intermediate_bboxes{1}(sr, :) getbbox(shape);meanshape_resize resetshape(Data{i}.intermediate_bboxes{1}(sr, :), Param.meanshape); %将Data{i}.tf2meanshape{sr} fitgeotrans(bsxfun(minus, Data{i}.intermediate_shapes{1}(1:end,:, sr), mean(Data{i}.intermediate_shapes{1}(1:end,:, sr))), ...bsxfun(minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :))), NonreflectiveSimilarity);Data{i}.meanshape2tf{sr} fitgeotrans(bsxfun(minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :))), ...bsxfun(minus, Data{i}.intermediate_shapes{1}(1:end,:, sr), mean(Data{i}.intermediate_shapes{1}(1:end,:, sr))), NonreflectiveSimilarity);shape_residual bsxfun(rdivide, Data{i}.shape_gt - Data{i}.intermediate_shapes{1}(:,:, sr), [Data{i}.intermediate_bboxes{1}(sr, 3) Data{i}.intermediate_bboxes{1}(sr, 4)]);[u, v] transformPointsForward(Data{i}.tf2meanshape{1}, shape_residual(:, 1), shape_residual(:, 2));Data{i}.shapes_residual(:, 1, sr) u;Data{i}.shapes_residual(:, 2, sr) v;% Data{i}.shapes_residual(:, :, sr) tformfwd(Data{i}.tf2meanshape{sr}, shape_residual(:, 1), shape_residual(:, 2));endend
end
这段代码的理解需要结合上面给出的那篇文章《人脸配准坐标变换解析》。 按照《人脸配准坐标变换解析》文章所述
S0¯¯¯¯S1¯¯¯¯S0−mean(S0)S1−mean(S1)}⇒S0¯¯¯¯c1R1S1¯¯¯¯\left.\begin{matrix}\overline{S_0}Sg−S1\Delta S=S_g-S_1可推出 ΔS˜c1R1ΔS
\widetilde{\Delta S}=c_1R_1\Delta S 但是现在问题比较特殊需要多操作一下: 由%将mean shape reproject face detection bbox上meanshape_resize resetshape(Data{i}.intermediate_bboxes{1}(sr, :), Param.meanshape);
查看resetshape的定义知meanshape被映射到intermediate_bboxes中使得S0S_0和S1S_1处于同样的尺度下和大致相似的位置上。用数学语言表达为:
S0_resizeS0∗Ratio[Region(1),Region(2)]
S_0\_resize=S_0*Ratio+[Region(1),Region(2)] 这里Ratio实际上是intermediate_bboxes的大小。 于是同样按照上面的方法计算 S0˜S0_Resize−mean(S0_Resize)S0∗Ratio−mean(S0)∗Ratio(S0−mean(S0))∗RatioS0¯¯¯¯∗Ratio
\widetilde{S_0}=S_0\_Resize-mean(S_0\_Resize)=S_0*Ratio-mean(S_0)*Ratio=(S_0-mean(S_0))*Ratio=
\overline{S_0}*Ratio 经过计算得S0˜Ratio∗S0¯¯¯¯c1˜R1˜S1¯¯¯¯\widetilde{S_0}=Ratio*\overline{S_0}=\widetilde{c_1}\widetilde{R_1}
\overline{S_1}.★\bigstar 这也就是上面的代码Data{i}.tf2meanshape{1} fitgeotrans(bsxfun(minus, Data{i}.intermediate_shapes{1}(1:end,:, 1), mean(Data{i}.intermediate_shapes{1}(1:end,:, 1))), ...(bsxfun(minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :)))), NonreflectiveSimilarity);
Data{i}.tf2meanshape{1}即为这里算出的c1˜R1˜\widetilde{c_1}\widetilde{R_1}. 但我们想要的是S0¯¯¯¯c1R1S1¯¯¯¯\overline{S_0}=c_1R_1\overline{S_1},不用着急(★\bigstar)为我们指明了方向。 c1R1c1˜R1˜/Ratioc1˜R1˜/intermediate_bboxesc_1R_1=\widetilde{c_1}\widetilde{R_1}/Ratio=\widetilde{c_1}\widetilde{R_1}/{intermediate\_{bboxes}}.因此:
ΔS˜c1˜R1˜/intermediate_bboxes∗ΔS\widetilde{\Delta S}=\widetilde{c_1}\widetilde{R_1}/{intermediate\_{bboxes}}*\Delta S 也就是代码中提的:%计算当前的shape与mean shape之间的相似性变换
Data{i}.tf2meanshape{1} fitgeotrans(bsxfun(minus, Data{i}.intermediate_shapes{1}(1:end,:, 1), mean(Data{i}.intermediate_shapes{1}(1:end,:, 1))),(bsxfun(minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :)))), NonreflectiveSimilarity);Data{i}.meanshape2tf{1} fitgeotrans((bsxfun(minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :)))),bsxfun(minus, Data{i}.intermediate_shapes{1}(1:end,:, 1), mean(Data{i}.intermediate_shapes{1}(1:end,:, 1))), NonreflectiveSimilarity);% calculate the residual shape from initial shape to groundtruth shape under normalization scale
shape_residual bsxfun(rdivide, Data{i}.shape_gt - Data{i}.intermediate_shapes{1}(:,:, 1), [Data{i}.intermediate_bboxes{1}(1, 3) Data{i}.intermediate_bboxes{1}(1, 4)]);% transform the shape residual in the image coordinate to the mean shape coordinate
[u, v] transformPointsForward(Data{i}.tf2meanshape{1}, shape_residual(:, 1), shape_residual(:, 2)); Data{i}.shapes_residual(:, 1, 1) u;Data{i}.shapes_residual(:, 2, 1) v;