百度站长平台有哪些功能,免费发布产品的平台,九江做网站,手机表格制作软件本篇希望以精准推荐模型为案例通过全面的撰写将AI产品经理需要懂的算法和模型进行了系统的入门讲解。
一个产品经理经常疑惑的概念#xff1a;
算法和模型的关系#xff0c;产品经理懂得解决问题时将问题抽象为模型#xff0c;对模型求解用算法#xff0c;没有谁大谁小
算法和模型的关系产品经理懂得解决问题时将问题抽象为模型对模型求解用算法没有谁大谁小算法和模型没有绝对的分界线。
这篇将主要从时下各种算法模型用于精准推荐都有其各自的优点和缺点带出我自创的精准推荐模型AI-UTAUT模型和实例解析 顺道讲解从算法模型功能的相似性的角度为入门AI产品经理的同学讲解算法模型的另外一个维度。
一、传统的UTAUT推荐模型 什么叫UTAUT传统上UTAUT指的是整合型科技接受模式即通过这个模型各个因子来观察精准推荐模型中用户的接受意愿。
整合技术接受与使用模型Unified theory of Acceptance and Use of Technology简称UTAUT是由 Venkatesh and Davis 文卡塔什和戴维斯 整合了技术适配模型Task techfitTTF、理性行为理论(Theory of Reasoned ActionTRA、计划行为理论(Throry of Planned BehaviorTPB)、 创新扩散理论(InnovationDiffusionTheoryIDT)、社会认知理论(SocialCongnitive TheorySCT)、PC利用模型(Model of PCU tilizationMPCU)、 复合 模型(Combined TAM and TPBCTAMTPB)、动机模型(Motivational modelMM)提炼出了四个核心变量和四个控制变量。
四个核心变量是努力期望(Effort Expectancy)、绩效期望(PerformanceExpectancy)、社会影响(Social influence)和便利条件(Facilitating Condition)。 四个控制变量是年龄、性别、经验和自愿性。
在许多大厂的产品经理中经常采用UTAUT模型来做精准推荐模型因子分析。
因为每一个网络用户的生活轨迹都被互联网忠实地记录着网络服务商抓取与挖掘了这些轨迹形成“数据痕迹”堪称“大数据”。 【一一AGI大模型学习 所有资源获取处一一】 ①人工智能/大模型学习路线 ②AI产品经理入门指南 ③大模型方向必读书籍PDF版 ④超详细海量大模型实战项目 ⑤LLM大模型系统学习教程 ⑥640套-AI大模型报告合集 ⑦从0-1入门大模型教程视频 ⑧AGI大模型技术公开课名额 根据这些大数据产品运营可以对消费者的兴趣爱好、购买行为进行科学的分析和预测透过大数据找到商业价值从而向消费者进行精准定向推荐。 虽然产品运营利用大数据实施精准推荐后大幅提升了营销效果改变了企业“知晓浪费了50%的广告费却不知晓哪50%被浪费”的尴尬局面 但运营的精准推荐不仅给用户带来了“确实想要的东西”也带来了垃圾信息、无用信息既给用户带来了便利又造成了困扰。
因此产品运营用大数据精准推荐信息推送的结果是并不是所有接触到精准推荐信息的用户都会接受并采取购买产品的行动。 消费者对大数据精准推荐的接受意愿的影响因素有哪些UTAUT模型回答了一部分但是也不充足。
原来的UTAUT模型在时下的产品运营需求中问题如下 其一UTAUT模型对便利条件依赖占据1/4这是无必要的 因为产品运营用大数据精准推荐是通过手机短信、电子邮件广告、搜索引擎、个性化引擎推荐、门户网站、微信、微博、竞价排名搜索、关键词搜索广告、点告、窄告等工具向消费者 进行精准信息推送的而当今社会智能手机和 PC机已经进入千家万户所以消费者可以借助智能手机和 PC机接收企业向自己推送的精准营销信息便利性不存在问题。
其二过于依赖年龄结构因素我国网民的年龄结构依然偏向年轻以10~39岁群体为主占整体的72.1%。因此产品的大数据精准营销的主要对象以年轻人为主。
其三给予性别因子的比重过高在我的新AI-UTAUT模型中是权重降低的原因是由于产品运营大数据精准推荐的特点是在合适的时间、合适的地点凭借合适的媒介 通过合适的渠道将合适的商品销售给合适的消费者因此只要企业大数据推送的信息是精准的无论男女皆能接受。
二、创新的AI-UTAUT模型-以AI新零售企业为例 先介绍一下投资的这家企业的产品形态这家企业有线下部分职能零售店也有线上部分软件产品包含小程序APP、ERP、CRM等系统产品。 特别介绍一下这家产品的场景是在地铁和地铁站附近的大型ShoppingMall。用户主要是居住工作在城市的白领为主。
精准推荐的目标是用自有的用户为基础数据训练算法模型这个模型是当用户到达某个兴趣点位附近时可以精准为其希望搜索到的品牌恰巧运用系统推荐用户感兴趣的品牌 这个模型暂时命名为AILBA。
1. 模型构建 利用AI技术整合UTAUT模型与4C理论的接受意愿影响因素模型虽然UTAUT模型被普遍地应用于技术接受因素的研究但对于大多数实际情况下———用户对大数据精准推荐的接受意愿 的影响因素其不仅受模型中因素的影响还受消费者需求是否得以满足的影响。
因此在模型设计过程中我为所投资的企业产品搭建了AI技术为引擎以UTAUT模型为框架结合4C理论加以修改构建整合了AI-UTAUT模型以期待该模型精准的为用户 推荐符合消费者需求的产品。
2. 模型解释 该模型主要工作站是推荐引擎和人工规则推荐引擎中所用的算法将在下一个段落根据算法的功能相似性一节里面细讲。
场景数据是指用户所处的环境例如用户刚刚下地铁用户刚刚在某个购物中心某家店有过消费过某个商品A根据上篇讲述的交叉关联销售可以为用户推荐关联商品B。
用户画像人人都在说用户画像贵在准。 广义上” 用户画像 ” 指的是企业从各个渠道收集用户信息再根据所获信息对用户进行人格化分析包括人口属性、兴趣爱好、购物偏好、社交属性等等 为每一位用户打上专属标签。
用户画像的分析维度 其一、人口属性 地域、年龄、性别、文化、职业、收入、生活习惯、消费习惯等;
其二、产品行为 产品类别、活跃频率、停留时间、问题咨询、产品喜好、产品驱动、使用习惯、产品消费等;
用户画像对精准推荐的好处随着移动互联网的发展各类手机应用的频繁使用用户的时间越来越趋于碎片化各维度的信息也更丰富 移动应用开发者们也从以技术为中心的产品设计渐渐转向了以用户为中心。
对用户的精准画像一方面可以很好地描述用户的许多特征有助于产品人员展开针对性的设计产品; 另一方面对运营人员开展精准化营销、个性化推荐也起到了至关重要的作用。
如今”用户画像”被越来越多的谈及它是产品经理、运营者们津津乐道的宝贝。 作为销售员们喜爱的一款工具我们来看看我所投资企业人工智能推荐引擎是如何进行用户画像帮助企业实现精准营销的。
企业管理者或销售人员借助我搭建的AI-UTAUT模型便能够实时获取客户的信息和行为轨迹包括他们的基本特征、联系方式他们浏览过哪个页面 他们喜欢点击、分享怎样的内容他们会咨询什么样的问题。
AI-UTAUT模型还能实时把客户的行为与销售员进行关联例如一旦监测到客户点击小程序中的任何页面即会通知销售人员帮助销售获取潜在客户实现标签化管理。 销售员还可以与客户发微信消息而且无需加好友、不用跳转即可随心实现。
根据客户的行为分析,AI-UTAUT模型运用独特的人工智能算法,可以自动生成成交几率预测,以漏斗图的形式把客户按照成功率由高往低排,让销售员一眼便能知道谁才是潜在用户 避免销售人员多做无用功。
例如某汽车4S店销售员小王周一上午到达公司后第一件事就是打开自己的微信这时他看到AI-UTAUT模型助理已经推送了几十条销售线索。
当他点开”客户”,可以查看AI所分析的预计成功率,并且系统已经自动按成功率高低排出客户的优先级。
这时系统显示一位叫阿莲的女士的预计成交率在85%,她留言询问某款SUV是否有更紧凑的型号,小王立马进行回复。5分钟后,他的手机铃声响起,来电显示正是阿莲。 短短5分钟一笔20万以上的业务就被敲定了。
此外用户画像除了在沟通和识别客户方面有帮助外还能对维系老客户和促进二次转化发挥更多价值。
例如我们还可以在AI-UTAUT后台选取一批用户的某些属性做一些预测功能例如预测用户是否会流失;或者预测用户是否会对新上线的功能感兴趣。 对应的预测出很可能会流失的用户针对性进行挽留的营销活动比如发红包、发优惠券等。针对会对新功能感兴趣的用户可以给其推送新功能来增加用户的粘性。
我所搭建的AI-UTAUT模型在所投资的这家正好解决了原来商家的优惠券使用率低、用户粘性低的问题。
综合来看AI-UTAUT模型不仅仅帮我所投资的这家企业的销售额提升同时这套模型算法也为周边的商家进行了赋能。 例如上文中所举的例子赋能4S点销售人员更好的服务客户的例子。
三、AI-UTAUT模型深度解析 1. 模型中的绩效期望因素 绩效期望正向影响消费者接受企业大数据精准推荐意愿因为消费者接受企业大数据精准推荐的信息有可能提高其信息搜索的效率。
企业要推送切实满足消费者需求的信息企业就必须做好消费者画像的识别工作完善数据分析推荐模型及时根据消费者多元、动态、 不可持续的需求进行数据推荐模型的完善和修正做好消费者画像特征分析工作保证向消费者推送的信息是消费者需求的真真正正地提高消费者信息搜索的效率。
2. 模型中的基于消费者需求和期望的信息方面 基于消费者需求和期望的信息正向影响消费者接受企业大数据精准推荐意愿因为基于消费者需求和期望的信息是适当的、准确的、有质量的信息。
企业要根据消费者经浏览、访问、购买形成的各式大数据进行细致分析洞察消费者的显性需求和潜在需求做好消费者产品喜好、心理接受价位、产品品牌等信息的预测 及时地以合适的方式在合适的时间将合适的产品信息推送给消费者提高消费者和产品的匹配度提高消费者转化率。
3. 模型中在线及时沟通方面 在线沟通正向影响消费者接受企业大数据精准营销意愿因为在线沟通能缩短消费者与企业人员的沟通距离在避免向消费者单向推销令消费者反感的同时 还可以让消费者互相了解购后感受降低信息不对称给消费者带来的负面影响的概率。
企业要搭建营销全过程的消费者参与互动平台。企业可通过微博、微信与消费者进行互动也可通过设置商品评价区、讨论区让消费者留言 在及时了解消费者对企业产品或服务评价的同时也可为企业产品或服务营造良好的口碑。
当然消费者对企业的产品或服务不满意时也可通过互动平台及时反馈企业也可及时处理降低不良口碑对企业的影响。
企业还可鼓励喜欢购后分享、有公众影响力的消费者进行分享以期带动其他消费者选择企业的产品或服务。
我利用AI-UTAUT模型所赋能的地铁新零售企业旗下的一类是智能贩售机我建议厂家在机器上安装一键在线沟通功能就是为了上述原因。
企业在开展精准推荐的过程中若企业人员能与消费者进行沟通就可将单向促销转换为“互动、双赢、关联关系”的沟通最大化地缩短了企业和消费者间的沟通距离 避免一味地向消费者进行单向推销在无法触及消费者需求点的情况下使消费者产生反感、抵触的情绪。
当然企业开展的大数据精准推荐并不是一次性的活动而是一个循环往复的过程企业人员在与消费者周而复始的沟通中能不断地收集消费者的信息 对自身的精准推荐模型算法不断调整和优化进而提升消费者接受企业大数据精准推荐的意愿提升对企业产品或服务的购买意愿。
四、设计AI-UTAUT模型时所研究过的算法模型 这篇中我们将按功能相似性讲解算法模型这里所讲解的模型算法是我在创造AI-UTAUT模型过程中多数检验过的。 所以在讲解算法模型的时候会总结哪些算法模型用在哪个场景比较多哪些算法模型是AI产品经理经常会遇到的。
由功能的相似性分组的算法模型如下 机器学习算法通常根据其功能的相似性进行分组。例如基于树的方法以及神经网络的方法。但是仍有算法可以轻松适应多个类别。 如学习矢量量化这是一个神经网络方法和基于实例的方法。
在读者阅读本段文字的时候如果有些属于不太熟悉或者有些模型算法听到的比较少请不用担心一方面可能是这类算法模型以后也很好用 如果需要用到的话到时候再针对性的学习这类算法模型也不迟。另外一方面我会尽量指明这些算法应用的场景。
1. 回归算法 回归算法涉及对变量之间的关系进行建模我们在使用模型进行的预测中产生的错误度量来改进。这些方法是数据统计的主力所以回归算法又称为回归分析。 此外它们也已被选入统计机器学习。
常用的的回归算法是 普通最小二乘回归OLSR 线性回归 Logistic回归 逐步回归 多元自适应回归样条MARS 局部估计的散点图平滑LOESS
用途场景预测未来预测销量等等。 例子如下图当一天中早高峰或者晚高峰的时候实际上是商场里面的品牌商销量减少的时候这一点可以通过我的AI-UTAUT模型数据实证。
2. 基于实例的算法 该类算法是解决实例训练数据的决策问题。这些方法构建了示例数据的数据库它需要将新数据与数据库进行比较。 为了比较我们使用相似性度量来找到最佳匹配并进行预测。出于这个原因基于实例的方法也称为赢者通吃方法和基于记忆的学习重点放在存储实例的表示上。 因此在实例之间使用相似性度量。
常用的基于实例的算法是 k-最近邻kNN 学习矢量量化LVQ 自组织特征映射SOM 本地加权学习LWL 正则化算法
用途场景商品上新双11前夕高达千万级。因为第三方POP商品上新没有人工审核环节商会有意、无意地将商品发布到错误类目更有甚者 部分商家采用批量上新和批量搬家工具导致大规模错挂商品的出现不断冲击着商品生态防线影响用户购物体验并带来了诸如食品、药品和成人用品等相关的一系列监管风险。
面对海量级的商品数据和高达上千个类目的商品层级分类体系如何才能有效判别商品类目挂靠的正确与否实现全方位和高效的监控。 在商品类目预测这个问题上很多电商公司在过去的10年里一直在不断探索和改进公开资料显示电商巨头eBay先后采用了传统的规则和统计等模型、 如KNN、KNNSLM和DNN几种方法准确率从最初的50%一步步提高到了90%。
3. 决策树算法 决策树方法用于构建决策模型这是基于数据属性的实际值。 决策在树结构中进行分叉直到对给定记录做出预测决定。决策树通常快速准确这也是机器学习从业者的最爱的算法。
常用的的决策树算法是 分类和回归树CART 迭代Dichotomiser 3ID3 C4.5和C5.0 卡方自动交互检测CHAID 决策树桩 M5 条件决策树
用途场景有一个经典的案例判断一个西瓜是否是好瓜就是典型的决策树算法模型的应用。
上图说明 有一个最直观的解释如果你吃的大部分的好瓜纹理都很清晰那么你肯定首先去判断面前的瓜纹理是不是清晰如果不清晰那极有可能不是好瓜。 但是还有一个问题好瓜大都纹理清晰但并不是所有纹理清晰的瓜都是好瓜你需要继续根据其他特征去判断。
假设你面前的瓜纹理清晰那么你回去想你吃过的纹理清晰的好瓜中还有什么让你印象深刻的特征对了你想起来根蒂蜷缩的纹理清晰的瓜是大都是好瓜。 上面我们讲过了怎么判断一个瓜是好瓜。如果让计算机去学习如何判断好瓜那么我们需要给它很多的样例。 这些样例数据中有好瓜有坏瓜每个样例都给出了瓜的纹理、根蒂、色泽、触感、敲声等等特征。 有了样例数据计算机如何得到一个像人类判断过程中的那种顺序判断的思路呢 答案就是决策树。
4. 贝叶斯算法 这些方法适用于贝叶斯定理的问题如分类和回归。
常用的贝叶斯算法是 朴素贝叶斯 高斯朴素贝叶斯 多项朴素贝叶斯 平均一依赖估计量AODE 贝叶斯信念网络BBN 贝叶斯网络BN
用途场景例如判断网络环境是否异常使用无监督学习获得每个设备、每个人员的网络行为模式结合行为分析与高等数学 运用递归贝叶斯估计Recursive Bayesian EstimationRBE理论提供对事件的估计概率并随着新特征的发现不断更新自动判断网络行为是否存在异常。
5. 聚类算法 几乎所有的聚类算法都涉及使用数据中的固有结构这需要将数据最佳地组织成最大共性的组。
常用的聚类算法是 K-均值 K-平均 期望最大化EM 分层聚类
用途场景在用机器做聚类学习的时候我们每种算法都对应有相应的计算原则可以把输入的各种看上去彼此“相近”的向量分在一个群组中。 然后下一步人们通常更有针对性地去研究每一组聚在一起的对象所拥有的共性以及那些远离各个群组的孤立点—— 这种孤立点研究在刑侦、特殊疾病排查和用户群体划分等方面都有应用。
6. 关联规则学习算法 关联规则学习方法提取规则它可以完美的解释数据中变量之间的关系。这些规则可以在大型多维数据集中被发现是非常重要的。
常用的关联规则学习算法是 Apriori算法 Eclat算法 用途场景在《 AI产品经理从懂精准推荐模型到产品创新》上篇中讲述比较多感兴趣的读者可以翻阅。
7. 人工神经网络算法 这些算法模型大多受到生物神经网络结构的启发。它们可以是一类模式匹配可以被用于回归和分类问题。它拥有一个巨大的子领域因为它拥有数百种算法和变体。
常用的人工神经网络算法是 感知机 反向传播 Hopfield神经网络 径向基函数神经网络RBFN
用途场景使用神经网络算法从用户的自拍中完成人脸识别并自动抠出轮廓并根据本地算法将自拍快速转变为动画风格或其它自定义风格的表情包。 8. 深度学习算法 深度学习算法是人工神经网络的更新同时深度学习算法也是机器学习的典型代表算法。他们更关心构建更大更复杂的神经网络。
常用的深度学习算法是 深玻尔兹曼机DBM 深信仰网络DBN 卷积神经网络CNN 堆叠式自动编码器
用途场景非常多有医疗影像识别、食品配料识别人脸识别等等。
9. 常用机器学习算法列表 朴素贝叶斯分类器机器学习算法
应用场景通常网页、文档和电子邮件进行分类将是困难且不可能的。 这就是朴素贝叶斯分类器机器学习算法的用武之地。分类器其实是一个分配总体元素值的函数。
例如垃圾邮件过滤是朴素贝叶斯算法的一种流行应用。因此垃圾邮件过滤器是一种分类器可为所有电子邮件分配标签“垃圾邮件”或“非垃圾邮件”。 基本上它是按照相似性分组的最流行的学习方法之一。这适用于流行的贝叶斯概率定理。
K-means聚类机器学习算法 通常K-means是用于聚类分析的无监督机器学习算法。此外K-Means是一种非确定性和迭代方法该算法通过预定数量的簇k对给定数据集进行操作。 因此K-Means算法的输出是具有在簇之间分离的输入数据的k个簇。
支持向量机学习算法 基本上它是用于分类或回归问题的监督机器学习算法。SVM从数据集学习这样SVM就可以对任何新数据进行分类。 此外它的工作原理是通过查找将数据分类到不同的类中。我们用它来将训练数据集分成几类。而且有许多这样的线性超平面 SVM试图最大化各种类之间的距离这被称为边际最大化。SVM分为两类线性SVM在线性SVM中训练数据必须通过超平面分离分类器。 非线性SVM在非线性SVM中不可能使用超平面分离训练数据。
Apriori机器学习算法 这是一种无监督的机器学习算法。我们用来从给定的数据集生成关联规则。关联规则意味着如果发生项目A则项目B也以一定概率发生生成的大多数关联规则都是IF_THEN格式。
应用场景例如如果人们购买iPad那么他们也会购买iPad保护套来保护它。Apriori机器学习算法工作的基本原理如果项目集频繁出现则项目集的所有子集也经常出现。
线性回归机器学习算法 它显示了2个变量之间的关系它显示了一个变量的变化如何影响另一个变量。
决策树机器学习算法 决策树是图形表示它利用分支方法来举例说明决策的所有可能结果。在决策树中内部节点表示对属性的测试。 因为树的每个分支代表测试的结果并且叶节点表示特定的类标签即在计算所有属性后做出的决定。此外我们必须通过从根节点到叶节点的路径来表示分类。
随机森林机器学习算法 它是首选的机器学习算法。我们使用套袋方法创建一堆具有随机数据子集的决策树。 我们必须在数据集的随机样本上多次训练模型因为我们需要从随机森林算法中获得良好的预测性能。 此外在这种集成学习方法中我们必须组合所有决策树的输出做出最后的预测。此外我们通过轮询每个决策树的结果来推导出最终预测。
Logistic回归机器学习算法 这个算法的名称可能有点令人困惑Logistic回归算法用于分类任务而不是回归问题。此外这里的名称“回归”意味着线性模型适合于特征空间。 该算法将逻辑函数应用于特征的线性组合这需要预测分类因变量的结果。 小结 我搭建的AI-UTAUT精准推荐模型有Apriori算法、神经网络算法、回归算法、聚类算法、贝叶斯算法预测销量的有回归算法 可以直接调用的有外面成熟的人脸识别算法、语音识别算法等。
产品经理日常工作中最常用的算法是Apriori算法、聚类模型、决策模型、贝叶斯算法、关联规则算法和深度学习、机器学习等。
五、AI产品经理入门标准和入门类型 AI产品经理入门前提条件主要是基于有哪些类别的企业时下和未来的一段时间AI企业主要有 第一类是纯粹的AI技术企业 第二类是AI的企业 第三类是综合型企业AI作为助推器型的企业。
AI产品经理在第一类企业里面做AI产品经理如果产品是AI算法本身即例如你要输出的产品是人脸识别系统这个时候需要AI产品经理对算法懂的要深刻一些 建议加入此类企业的产品朋友可以针对性的补充算法知识。
如果在这类企业里面从事的是AI的工作那么主要的重点可以放在为这类AI系统找到适合的应用场景并占领市场先机先研发出来可以落地的产品。
AI产品经理在第二类企业里面更多的是基于行业经验看到行业内部可以被AI取代或者提升效率的点上AI。为行业赋能。
第三类综合性企业主要是BAT/TMD等大型科技网络公司也包含中国平安、招行银行等国营企事业单位。 这类企业往往既有自己的核心算法同时有希望旗下细分业务上AI。
建议加入此类公司或者单位的AI产品经理可以从数据型AI产品经理做起因为我们都知道AI包含数据、算法、算力而大型企业核心需求是打通数据竖井 将历史上累计的大数据用好用AI技术得到更好的运用所以AI产品经理可以适当补充数据分析方面的知识。
如何系统的去学习大模型LLM
作为一名热心肠的互联网老兵我意识到有很多经验和知识值得分享给大家也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限很多互联网行业朋友无法获得正确的资料得到学习提升故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
有需要的小伙伴可以V扫描下方二维码免费领取 一、全套AGI大模型学习路线
AI大模型时代的学习之旅从基础到前沿掌握人工智能的核心技能 二、640套AI大模型报告合集
这套包含640份报告的合集涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师还是对AI大模型感兴趣的爱好者这套报告合集都将为您提供宝贵的信息和启示。 三、AI大模型经典PDF籍
随着人工智能技术的飞速发展AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型如GPT-3、BERT、XLNet等以其强大的语言理解和生成能力正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。 四、AI大模型商业化落地方案 阶段1AI大模型时代的基础理解
目标了解AI大模型的基本概念、发展历程和核心原理。内容 L1.1 人工智能简述与大模型起源L1.2 大模型与通用人工智能L1.3 GPT模型的发展历程L1.4 模型工程 - L1.4.1 知识大模型 - L1.4.2 生产大模型 - L1.4.3 模型工程方法论 - L1.4.4 模型工程实践L1.5 GPT应用案例
阶段2AI大模型API应用开发工程
目标掌握AI大模型API的使用和开发以及相关的编程技能。内容 L2.1 API接口 - L2.1.1 OpenAI API接口 - L2.1.2 Python接口接入 - L2.1.3 BOT工具类框架 - L2.1.4 代码示例L2.2 Prompt框架 - L2.2.1 什么是Prompt - L2.2.2 Prompt框架应用现状 - L2.2.3 基于GPTAS的Prompt框架 - L2.2.4 Prompt框架与Thought - L2.2.5 Prompt框架与提示词L2.3 流水线工程 - L2.3.1 流水线工程的概念 - L2.3.2 流水线工程的优点 - L2.3.3 流水线工程的应用L2.4 总结与展望
阶段3AI大模型应用架构实践
目标深入理解AI大模型的应用架构并能够进行私有化部署。内容 L3.1 Agent模型框架 - L3.1.1 Agent模型框架的设计理念 - L3.1.2 Agent模型框架的核心组件 - L3.1.3 Agent模型框架的实现细节L3.2 MetaGPT - L3.2.1 MetaGPT的基本概念 - L3.2.2 MetaGPT的工作原理 - L3.2.3 MetaGPT的应用场景L3.3 ChatGLM - L3.3.1 ChatGLM的特点 - L3.3.2 ChatGLM的开发环境 - L3.3.3 ChatGLM的使用示例L3.4 LLAMA - L3.4.1 LLAMA的特点 - L3.4.2 LLAMA的开发环境 - L3.4.3 LLAMA的使用示例L3.5 其他大模型介绍
阶段4AI大模型私有化部署
目标掌握多种AI大模型的私有化部署包括多模态和特定领域模型。内容 L4.1 模型私有化部署概述L4.2 模型私有化部署的关键技术L4.3 模型私有化部署的实施步骤L4.4 模型私有化部署的应用场景
学习计划
阶段11-2个月建立AI大模型的基础知识体系。阶段22-3个月专注于API应用开发能力的提升。阶段33-4个月深入实践AI大模型的应用架构和私有化部署。阶段44-5个月专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
有需要的小伙伴可以Vx扫描下方二维码免费领取