当前位置: 首页 > news >正文

专业网站建设模块电商卖什么产品有前景

专业网站建设模块,电商卖什么产品有前景,浙江省专业网站制作网站建设,聊城手机网站建设价格目录 前言一、Lagent智能体工具1-1、什么是智能体#xff1f;1-2、Lagent智能体 二、InternLM-XComposer#xff08;图文理解创作模型介绍#xff09;三、Lagent调用实践3-0、环境搭建3-1、创建虚拟环境3-2、导入所需要的包3-3、模型下载3-4、Lagent安装3-5、demo运行 四、I… 目录 前言一、Lagent智能体工具1-1、什么是智能体1-2、Lagent智能体 二、InternLM-XComposer图文理解创作模型介绍三、Lagent调用实践3-0、环境搭建3-1、创建虚拟环境3-2、导入所需要的包3-3、模型下载3-4、Lagent安装3-5、demo运行 四、InternLM-XComposer本地部署实践4-0、环境搭建4-1、创建虚拟环境4-2、导入所需要的包4-3、模型下载4.4 代码准备4.5 Demo 运行 附录1、模型下载Hugging Face 总结 前言 AI Agent人工智能代理是一种能够感知环境、进行决策和执行动作的智能实体。 一、Lagent智能体工具 1-1、什么是智能体 背景介绍随着技术的发展大语言模型的规模也在不断扩大也涌现出了上下文学习能力、推理能力、思维链等类似人类思考方式的多种能力但是大语言模型仍然存在着大量问题例如幻觉、上下文限制等等为了解决这些问题Ai Agent应用而生通过让大模型借助一个或者多个Agent的能力构建成为具备自主思考、决策并且执行的智能体。 智能体AI Agent基于大模型让人们以自然语言为交互方式是一种能够通过对话感知任务、进行决策并且执行动作的智能实体。简言之AI Agent 具备通过独立思考、调用工具去逐步完成给定目标的能力。诸如西部世界小镇(25个AI智能体在游戏世界上班、闲聊、social、交友甚至还能谈恋爱而且每个Agent都有自己的个性和背景故事)、AutoGPT等火爆的Agent项目。 如下图为西部世界小镇游戏截图 西部世界小镇新闻链接《西部世界》真来了斯坦福爆火「小镇」开源25个AI智能体恋爱交友附保姆级教程 项目地址https://github.com/joonspk-research/generative_agents 与大模型的区别大模型与人类之间的交互是基于 prompt 实现的用户 prompt 是否清晰明确会影响大模型回答的效果。而 AI Agent 的工作仅需给定一个目标它就能够针对目标独立思考并做出行动。 1-2、Lagent智能体 官方GitHub链接https://github.com/InternLM/lagent?tabreadme-ov-file LagentLagent是一个轻量级的开源框架允许用户高效地构建基于大型语言模型LLM的代理。它还提供了一些典型的工具来增强 LLM。框架概述如下所示 二、InternLM-XComposer图文理解创作模型介绍 官方GitHub链接https://github.com/InternLM/InternLM-XComposer 介绍InternLM-XComposer 是一个基于 InternLM 的视觉语言大模型 VLLM用于高级文本图像理解和合成。 该模型具有以下特点 丰富的多语言知识理解通过对广泛的多模态多语言概念的训练和精心设计的策略增强文本图像理解的能力从而对视觉内容有深刻的理解 图文合成InternLM-XComposer 可以毫不费力地生成连贯且上下文相关的文章无缝集成图像提供更具吸引力和身临其境的阅读体验。文本-图像合成通过以下步骤实现 文本生成它根据人工提供的说明制作长格式文本。图像发现它精确定位图像放置的最佳位置并提供图像描述。图像检索和选择它选择候选图像并识别与内容最佳补充的图像。 三、Lagent调用实践 3-0、环境搭建 环境租用autoDL环境选torch1.11.0,ubuntu20.04python版本为3.8cuda版本为11.3使用v100来进行实验。 3-1、创建虚拟环境 bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中# 创建虚拟环境 conda create -n internlm# 激活虚拟环境 conda activate internlm3-2、导入所需要的包 # 升级pip python -m pip install --upgrade pip# 下载速度慢可以考虑一下更换镜像源。 # pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simplepip install modelscope1.9.5 pip install transformers4.35.2 pip install streamlit1.24.0 pip install sentencepiece0.1.99 pip install accelerate0.24.13-3、模型下载 概述使用魔搭社区下载模型使用到了snapshot_download函数第一个参数为模型名称参数 cache_dir 为模型的下载路径我这里的路径在/root/model下将下列代码写入到一个py文件中使用命令python 文件名 来执行下载。 import torch from modelscope import snapshot_download, AutoModel, AutoTokenizer import os model_dir snapshot_download(Shanghai_AI_Laboratory/internlm-chat-7b, cache_dir/root/model, revisionv1.0.3)下载图片如下需要预留大约20G的空间。 3-4、Lagent安装 # 创建目录 cd /root/code git clone https://gitee.com/internlm/lagent.git cd /root/code/lagent git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致 pip install -e . # 源码安装 代码修改将 /root/code/lagent/examples/react_web_demo.py 内容替换为以下代码 import copy import osimport streamlit as st from streamlit.logger import get_loggerfrom lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter from lagent.agents.react import ReAct from lagent.llms import GPTAPI from lagent.llms.huggingface import HFTransformerCasualLMclass SessionState:def init_state(self):Initialize session state variables.st.session_state[assistant] []st.session_state[user] []#action_list [PythonInterpreter(), GoogleSearch()]action_list [PythonInterpreter()]st.session_state[plugin_map] {action.name: actionfor action in action_list}st.session_state[model_map] {}st.session_state[model_selected] Nonest.session_state[plugin_actions] set()def clear_state(self):Clear the existing session state.st.session_state[assistant] []st.session_state[user] []st.session_state[model_selected] Noneif chatbot in st.session_state:st.session_state[chatbot]._session_history []class StreamlitUI:def __init__(self, session_state: SessionState):self.init_streamlit()self.session_state session_statedef init_streamlit(self):Initialize Streamlits UI settings.st.set_page_config(layoutwide,page_titlelagent-web,page_icon./docs/imgs/lagent_icon.png)# st.header(:robot_face: :blue[Lagent] Web Demo , dividerrainbow)st.sidebar.title(模型控制)def setup_sidebar(self):Setup the sidebar for model and plugin selection.model_name st.sidebar.selectbox(模型选择, options[gpt-3.5-turbo,internlm])if model_name ! st.session_state[model_selected]:model self.init_model(model_name)self.session_state.clear_state()st.session_state[model_selected] model_nameif chatbot in st.session_state:del st.session_state[chatbot]else:model st.session_state[model_map][model_name]plugin_name st.sidebar.multiselect(插件选择,optionslist(st.session_state[plugin_map].keys()),default[list(st.session_state[plugin_map].keys())[0]],)plugin_action [st.session_state[plugin_map][name] for name in plugin_name]if chatbot in st.session_state:st.session_state[chatbot]._action_executor ActionExecutor(actionsplugin_action)if st.sidebar.button(清空对话, keyclear):self.session_state.clear_state()uploaded_file st.sidebar.file_uploader(上传文件, type[png, jpg, jpeg, mp4, mp3, wav])return model_name, model, plugin_action, uploaded_filedef init_model(self, option):Initialize the model based on the selected option.if option not in st.session_state[model_map]:if option.startswith(gpt):st.session_state[model_map][option] GPTAPI(model_typeoption)else:st.session_state[model_map][option] HFTransformerCasualLM(/root/model/Shanghai_AI_Laboratory/internlm-chat-7b)return st.session_state[model_map][option]def initialize_chatbot(self, model, plugin_action):Initialize the chatbot with the given model and plugin actions.return ReAct(llmmodel, action_executorActionExecutor(actionsplugin_action))def render_user(self, prompt: str):with st.chat_message(user):st.markdown(prompt)def render_assistant(self, agent_return):with st.chat_message(assistant):for action in agent_return.actions:if (action):self.render_action(action)st.markdown(agent_return.response)def render_action(self, action):with st.expander(action.type, expandedTrue):st.markdown(p styletext-align: left;display:flex; span stylefont-size:14px;font-weight:600;width:70px;text-align-last: justify;插 件/spanspan stylewidth:14px;text-align:left;display:block;:/spanspan styleflex:1; # noqa E501 action.type /span/p,unsafe_allow_htmlTrue)st.markdown(p styletext-align: left;display:flex; span stylefont-size:14px;font-weight:600;width:70px;text-align-last: justify;思考步骤/spanspan stylewidth:14px;text-align:left;display:block;:/spanspan styleflex:1; # noqa E501 action.thought /span/p,unsafe_allow_htmlTrue)if (isinstance(action.args, dict) and text in action.args):st.markdown(p styletext-align: left;display:flex;span stylefont-size:14px;font-weight:600;width:70px;text-align-last: justify; 执行内容/spanspan stylewidth:14px;text-align:left;display:block;:/span/p, # noqa E501unsafe_allow_htmlTrue)st.markdown(action.args[text])self.render_action_results(action)def render_action_results(self, action):Render the results of action, including text, images, videos, andaudios.if (isinstance(action.result, dict)):st.markdown(p styletext-align: left;display:flex;span stylefont-size:14px;font-weight:600;width:70px;text-align-last: justify; 执行结果/spanspan stylewidth:14px;text-align:left;display:block;:/span/p, # noqa E501unsafe_allow_htmlTrue)if text in action.result:st.markdown(p styletext-align: left; action.result[text] /p,unsafe_allow_htmlTrue)if image in action.result:image_path action.result[image]image_data open(image_path, rb).read()st.image(image_data, captionGenerated Image)if video in action.result:video_data action.result[video]video_data open(video_data, rb).read()st.video(video_data)if audio in action.result:audio_data action.result[audio]audio_data open(audio_data, rb).read()st.audio(audio_data)def main():logger get_logger(__name__)# Initialize Streamlit UI and setup sidebarif ui not in st.session_state:session_state SessionState()session_state.init_state()st.session_state[ui] StreamlitUI(session_state)else:st.set_page_config(layoutwide,page_titlelagent-web,page_icon./docs/imgs/lagent_icon.png)# st.header(:robot_face: :blue[Lagent] Web Demo , dividerrainbow)model_name, model, plugin_action, uploaded_file st.session_state[ui].setup_sidebar()# Initialize chatbot if it is not already initialized# or if the model has changedif chatbot not in st.session_state or model ! st.session_state[chatbot]._llm:st.session_state[chatbot] st.session_state[ui].initialize_chatbot(model, plugin_action)for prompt, agent_return in zip(st.session_state[user],st.session_state[assistant]):st.session_state[ui].render_user(prompt)st.session_state[ui].render_assistant(agent_return)# User input form at the bottom (this part will be at the bottom)# with st.form(keymy_form, clear_on_submitTrue):if user_input : st.chat_input():st.session_state[ui].render_user(user_input)st.session_state[user].append(user_input)# Add file uploader to sidebarif uploaded_file:file_bytes uploaded_file.read()file_type uploaded_file.typeif image in file_type:st.image(file_bytes, captionUploaded Image)elif video in file_type:st.video(file_bytes, captionUploaded Video)elif audio in file_type:st.audio(file_bytes, captionUploaded Audio)# Save the file to a temporary location and get the pathfile_path os.path.join(root_dir, uploaded_file.name)with open(file_path, wb) as tmpfile:tmpfile.write(file_bytes)st.write(fFile saved at: {file_path})user_input 我上传了一个图像路径为: {file_path}. {user_input}.format(file_pathfile_path, user_inputuser_input)agent_return st.session_state[chatbot].chat(user_input)st.session_state[assistant].append(copy.deepcopy(agent_return))logger.info(agent_return.inner_steps)st.session_state[ui].render_assistant(agent_return)if __name__ __main__:root_dir os.path.dirname(os.path.dirname(os.path.abspath(__file__)))root_dir os.path.join(root_dir, tmp_dir)os.makedirs(root_dir, exist_okTrue)main()3-5、demo运行 streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006结果如图所示 四、InternLM-XComposer本地部署实践 4-0、环境搭建 环境租用autoDL环境选torch1.11.0,ubuntu20.04python版本为3.8cuda版本为11.3使用v100来进行实验。 4-1、创建虚拟环境 bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中# 创建虚拟环境 conda create -n internlm# 激活虚拟环境 conda activate internlm4-2、导入所需要的包 # 升级pip python -m pip install --upgrade pip# 下载速度慢可以考虑一下更换镜像源。 # pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple# 将以下依赖包放置在txt文件中并使用命令pip install -r requirements.txt 来进行安装。Notice: 详细依赖版本点赞收藏关注我后私信获取以下为部分展示 accelerate0.25.0 aiofiles23.2.1 altair5.2.0 annotated-types0.6.0 anyio4.2.0 attrs23.2.0 Brotli file:///tmp/abs_ecyw11_7ze/croots/recipe/brotli-split_1659616059936/work certifi file:///croot/certifi_1700501669400/work/certifi cffi file:///croot/cffi_1700254295673/work charset-normalizer file:///tmp/build/80754af9/charset-normalizer_1630003229654/work click8.1.7 contourpy1.2.0 cryptography file:///croot/cryptography_1694444244250/work cycler0.12.1 einops0.7.0 exceptiongroup1.2.0 fastapi0.108.0 ffmpy0.3.1 filelock file:///croot/filelock_1700591183607/work fonttools4.47.0 fsspec2023.12.2 gmpy2 file:///tmp/build/80754af9/gmpy2_1645455533097/work gradio3.44.4 gradio_client0.5.1 h110.14.0 httpcore1.0.2 httpx0.26.0 huggingface-hub0.20.2 idna file:///croot/idna_1666125576474/work importlib-resources6.1.1 Jinja2 file:///croot/jinja2_1666908132255/work jsonschema4.20.0 jsonschema-specifications2023.12.1 kiwisolver1.4.5 markdown22.4.10 MarkupSafe file:///opt/conda/conda-bld/markupsafe_1654597864307/work matplotlib3.8.2 mkl-fft file:///croot/mkl_fft_1695058164594/work mkl-random file:///croot/mkl_random_1695059800811/work mkl-service2.4.0 mpmath file:///croot/mpmath_1690848262763/work networkx file:///croot/networkx_1690561992265/work numpy file:///croot/numpy_and_numpy_base_1701295038894/work/dist/numpy-1.26.2-cp310-cp310-linux_x86_64.whl#sha2562ab675fa590076aa37cc29d18231416c01ea433c0e93be0da3cfd734170cfc6f orjson3.9.10 packaging23.2 pandas2.1.4 Pillow file:///croot/pillow_1696580024257/work psutil5.9.7 pycparser file:///tmp/build/80754af9/pycparser_1636541352034/work pydantic2.5.3 pydantic_core2.14.6 pydub0.25.1 pyOpenSSL file:///croot/pyopenssl_1690223430423/work pyparsing3.1.1 PySocks file:///home/builder/ci_310/pysocks_1640793678128/work python-dateutil2.8.2 python-multipart0.0.6 pytz2023.3.post1 PyYAML6.0.1 referencing0.32.1 regex2023.12.25 requests file:///croot/requests_1690400202158/work rpds-py0.16.2 safetensors0.4.1 semantic-version2.10.0 sentencepiece0.1.99 six1.16.0 sniffio1.3.0 starlette0.32.0.post1 sympy file:///croot/sympy_1668202399572/work timm0.4.12 tokenizers0.13.3 toolz0.12.0 torch2.0.1 torchaudio2.0.2 torchvision0.15.2 tqdm4.66.1 transformers4.33.1 triton2.0.0 typing_extensions4.9.0 tzdata2023.4 urllib3 file:///croot/urllib3_1698257533958/work uvicorn0.25.0 websockets11.0.3 XlsxWriter3.1.2 4-3、模型下载 概述在 /root/model 路径下新建 download.py 文件并在其中输入以下内容并运行 python /root/model/download.py 执行下载 import torch from modelscope import snapshot_download, AutoModel, AutoTokenizer import os model_dir snapshot_download(Shanghai_AI_Laboratory/internlm-xcomposer-7b, cache_dir/root/model, revisionmaster)4.4 代码准备 概述在 /root/code git clone InternLM-XComposer 仓库的代码 cd /root/code git clone https://gitee.com/internlm/InternLM-XComposer.git cd /root/code/InternLM-XComposer git checkout 3e8c79051a1356b9c388a6447867355c0634932d # 最好保证和教程的 commit 版本一致4.5 Demo 运行 在终端运行以下代码 cd /root/code/InternLM-XComposer python examples/web_demo.py \--folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \--num_gpus 1 \--port 6006详情页如下所示 附录 1、模型下载Hugging Face 使用huggingface-cli命令行工具安装 pip install -U huggingface_hub然后新建文件填入以下代码即可 import os # 下载模型 # 将名为HF_ENDPOINT的环境变量设置为https://hf-mirror.com。即访问Hugging Face的镜像站点而不是需要代理去访问Huggingface的官网。 # os.environ[HF_ENDPOINT] https://hf-mirror.com# resume-download断点续下 # local-dir本地存储路径。linux 环境下需要填写绝对路径 os.system(huggingface-cli download --resume-download internlm/internlm-chat-7b --local-dir your_path)具体下载过程如下图所示 使用huggingface_hub来下载模型中的部分文件 import os # 将名为HF_ENDPOINT的环境变量设置为https://hf-mirror.com。即访问Hugging Face的镜像站点而不是需要代理去访问Huggingface的官网。 # os.environ[HF_ENDPOINT] https://hf-mirror.comfrom huggingface_hub import hf_hub_download # Load model directly hf_hub_download(repo_idinternlm/internlm-20b, filenameconfig.json)Notice: 如果发生报错requests.exceptions.ProxyError这个错误通常是由于代理服务器无法连接或超时引起的。把代码中的注释打开即可。下载成功截图如下所示 参考文章 读懂AI Agent基于大模型的人工智能代理(转自知乎. InternLM官方仓库 总结 代码比人更有温度。
http://www.zqtcl.cn/news/127143/

相关文章:

  • wordpress页面更新发布失败seo网络优化是做什么的
  • 百度收录多的是哪些网站网站本科报考官网
  • 成都管理咨询公司排名seo策略怎么写举例
  • 建设网站的难点动漫设计属于什么专业
  • 辽阳做网站的公司大型营销型网站制作
  • 已有域名怎么建设网站wordpress数据主机名
  • 网站设计的公司蒙特注册成立公司的基本流程
  • 成交型网站山西网络营销
  • 做网站必须在工信部备案吗网站开发英语
  • 门户网站模板图片建设厅网站初始数据入库
  • 甘肃三北防护林建设局网站阿里企业邮箱app
  • 沃尔沃公司网站建设公司建网站费用
  • 新网站怎么发外链公司做网站 要准备哪些素材
  • 建站域名英雄联盟网页制作素材
  • 手机网站 微信网站 区别布吉做网站
  • 网站建设层级图微信小程序怎么制作网页
  • 服务器上的网站怎么做301中小企业网站制作报价
  • 做网站需要用什么技术制作静态网站制作
  • drupal网站开发盐城网站建设费用
  • 采票网站刷流水做任务网站建设方案及预算
  • 传奇网站模块下载天蝎做网站建网站
  • 收录网站的二级域名wordpress虚拟币接口
  • 论坛建站烟台工程建设信息网站
  • 南京有哪些做网站的公司网站开发兼职团队
  • 网站建设优化外包免费客户管理软件哪个好用
  • 网上购物最便宜的网站微信官方网站服务中心
  • 充电网站建设方案个体工商户查询
  • 所有网站302跳转百度wordpress最大上传2g
  • 南京网站制作网页seo推广百度百科
  • 陵水网站建设哪家好建设培训考试服务网站