当前位置: 首页 > news >正文

网站建设框架文档wordpress怎么添加留言板

网站建设框架文档,wordpress怎么添加留言板,外网网站,用dw做网页的步骤本文介绍hadoop中的MapReduce技术的应用#xff0c;使用java API。操作系统#xff1a;Ubuntu24.04。 MapReduce概述 MapReduce概念 MapReduce是一个分布式运算程序的编程框架#xff0c;核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序…本文介绍hadoop中的MapReduce技术的应用使用java API。操作系统Ubuntu24.04。 MapReduce概述 MapReduce概念 MapReduce是一个分布式运算程序的编程框架核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序并发运行在一个Hadoop集群上。 MapReduce核心思想 分布式的运算程序往往需要分成至少2个阶段。 第一个阶段的MapTask并发实例完全并行运行互不相干。 第二个阶段的ReduceTask并发实例互不相干但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。 MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段如果用户的业务逻辑非常复杂那就只能多个MapReduce程序串行运行。 MapReduce 进程 MrAppMaster负责整个程序的过程调度及状态调度 MapTask负责 Map 阶段的整个数据处理流程 ReduceTask负责 Reduce 阶段的整个数据处理流程 创建软件包 新建一个MapReduce软件包 编写Mapper类 Mapper类将单词文本进行切割切割成一个个的单词写入到上下文中 1按行读取通过split函数进行切割将切割出来的一个个单词放到数组words中 2遍历数组words将存在的单词数据存储到word中然后将word写入到context上下文使Redcue程序能访问到数据 核心代码 package MapReduce;import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class WordCountMapper extends MapperLongWritable, Text, Text, IntWritable {// 输出Text k new Text();IntWritable v new IntWritable(1);Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 1 获取一行String line value.toString();// 2 切割String[] words line.split( );// 3 输出for (String word : words) {k.set(word);context.write(k, v);}} }编写Reducer类 Reducer类 1将每个单词统计次数结果进行求和合并 2把统计结果依次写入到context上下文中 核心代码 package MapReduce;import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class WordCountReducer extends ReducerText, IntWritable, Text, LongWritable {Overrideprotected void reduce(Text key, IterableIntWritable values, Context context) throws IOException, InterruptedException {// 声明变量 用于存储聚合完的结果long count 0;// 遍历相同的 key 获取对应的所有 valuefor (IntWritable value : values) {count value.get();}// 将聚合完的结果写到 MapReduce 框架context.write(key, new LongWritable(count));} }编写Driver类 Driver类中需要进行以下操作 获取job 设置jar包路径 关联Mapper、Reducer 设置map输出的k,v类型 最终输出的k,v类型 设置输入路径和输出路径 提交job 核心代码 package MapReduce;import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class WordCountDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {// 0. 自定义配置对象Configuration conf new Configuration();// 1. 创建 Job 对象参数可取消Job job Job.getInstance(conf);// 2. 给 Job 对象添加 Mapper 类的 Classjob.setMapperClass(WordCountMapper.class);// 3. 给 Job 对象添加 Reduce 类的 Classjob.setReducerClass(WordCountReducer.class);// 4. 给 Job 对象添加 Driver 类的 Classjob.setJarByClass(WordCountDriver.class);// 5. 设置 Mapper 输出的数据的 key 类型job.setMapOutputKeyClass(Text.class);// 6. 设置 Mapper 输出的数据的 value 类型job.setMapOutputValueClass(IntWritable.class);// 7. 设置 Reduce 输出的数据的 key 类型job.setOutputKeyClass(Text.class);// 8. 设置 Reduce 输出的数据的 value 类型job.setOutputValueClass(LongWritable.class);// 定义uri字符串// String uri hdfs://master:9000;// 9. 设置 MapReduce 任务的输入路径FileInputFormat.setInputPaths(job, new Path(args[0]));// 10.设置 MapReduce 任务的输出路径FileOutputFormat.setOutputPath(job, new Path(args[1]));// 11.提交任务boolean result job.waitForCompletion(true);// 12.退出返回System.exit(result ? 0 : 1);} }打包 在IDEA中选择最右边的“Maven”选项卡展开旁边的” Lifecycle → package”双击在最左边的Project面板中找到” src → target”就能发现生成了一个jar文件我这里是“Spark-1.0-SNAPSHOT.jar”。 找到这个文件在文件资源管理器打开上传这个文件。可以修改成一个简单的名字如“mr.jar”然后放到一个你容易找到的地方例如桌面上。利用XShell把这个文件上传到hadoop集群中 在hadoop集群中执行MapReduce程序 先准备好需要统计词频的文件用浏览器打开hadoop的Web UI输入地址 http://hadoop101:9870/ 然后选择“Utilities”菜单下的“Browser the file system”我创建了一个文件夹“wordcount” 进入“wordcount”文件夹我继续创建了一个文件夹“input”。继续进入“input”文件夹我上传了两个文件“”file01.txt 和“file02.txt”内容分别为 Hello MapReduce Bye MapReduce Hello Hadoop Goodbye Hadoop 进入主机master打开命令行窗口输入下列命令来执行上传的MapReduce程序 cd /home/youka hadoop jar mr.jar mr.WordCountDriver /wordcount/input /wordcount/output 系统执行后报错了 Could not find or load main class org.apache.hadoop.mapreduce.v2.app.MRAppMaster 这里给出的报错信息非常明确就是mapreduce配置文件没有配好先打开hadoop中mapreduce配置文件 vim /usr/local/hadoop/etc/hadoop/mapred-site.xml 在configuration中增加一下配置 propertynameyarn.app.mapreduce.am.env/namevalueHADOOP_MAPRED_HOME${HADOOP_HOME}/value /property propertynamemapreduce.map.env/namevalueHADOOP_MAPRED_HOME${HADOOP_HOME}/value /property propertynamemapreduce.reduce.env/namevalueHADOOP_MAPRED_HOME${HADOOP_HOME}/value /property重新执行成功 在“wordcount”中增加了一个”output”文件夹 打开后多了两个文件 “part-r-00000”文件显示了统计结果
http://www.zqtcl.cn/news/891192/

相关文章:

  • 电子商务网站建设与管理实训报告百度权重划分等级
  • 网站建设响应式是什么医院网站建设方案策划书
  • 开鲁网站seo不用下载男女做羞羞事动画网站免费
  • 做网站客户需求新乡专业做网站多少钱
  • 邢台建设银行官方网站二维码生成器app下载
  • 自己怎么做网站游戏做网站就是做app
  • 怎样做一元购网站wordpress+淘客代码
  • 网站建设发展现状贵阳有哪些做网站的公司
  • 微博上如何做网站推广蝉知和wordpress
  • 泷澄建设集团网站北京建设执业资格注册网站
  • 门户网站建设情况报告深圳龙岗房价多少钱一平方米
  • 网站建设备案是什么ps培训班
  • 深圳网站推广优化wordpress 运行速度慢
  • 谁能给个网站谢谢发布广东建设工程信息网站
  • 网站建设用户需求分析中国加盟网
  • 建设上线网站seo关键词优化软件排名
  • 郑州手工网站建设公司企业做网站好做吗
  • 苏华建设集团网站产品营销网站
  • 郑州专业做网站的网站收录最好的方法
  • 微信小程序网站建设哪家好视频教学网站开发
  • 个人网站排行网站集约化后如何建设
  • 企业网站维护wordpress特效代码
  • 建设银行网站短信错误6次wordpress新主题去版权
  • 国外 配色网站天猫店购买交易平台
  • 网站推广广告词大全集网站和网络建设自查报告
  • 电子商务网站建设备案须知自己做的网站服务器在哪里
  • 怎样用wordpress做网站wordpress 首页判断
  • jsp做的网站效果织梦网站程序模板
  • 展示型网站设计公司网盘wordpress
  • 网站建设 保密学服装设计后悔了