网站优化 书,wordpress 七牛云优化,工信部备案系统网站,如何选择网站建设案例不是一个机器学习算法是一种基于搜索的最优化方法作用#xff1a;最小化一个损失函数梯度上升法#xff1a;最大化一个效用函数 并不是所有函数都有唯一的极值点 解决方法#xff1a;
多次运行#xff0c;随机化初始点梯度下降法的初始点也是一个超参数
代码演示
impor…不是一个机器学习算法是一种基于搜索的最优化方法作用最小化一个损失函数梯度上升法最大化一个效用函数 并不是所有函数都有唯一的极值点 解决方法
多次运行随机化初始点梯度下降法的初始点也是一个超参数
代码演示
import numpy as np
import matplotlib.pyplot as plt
plot_x np.linspace(-1., 6., 141)
plot_y (plot_x-2.5)**2 - 1.
plt.plot(plot_x, plot_y)
plt.show()梯度下降法
epsilon 1e-8
eta 0.1
def J(theta):return (theta-2.5)**2 - 1.def dJ(theta):return 2*(theta-2.5)theta 0.0
while True:gradient dJ(theta)last_theta thetatheta theta - eta * gradientif(abs(J(theta) - J(last_theta)) epsilon):breakprint(theta)
print(J(theta))可视化
theta 0.0
theta_history [theta]
while True:gradient dJ(theta)last_theta thetatheta theta - eta * gradienttheta_history.append(theta)if(abs(J(theta) - J(last_theta)) epsilon):breakplt.plot(plot_x, J(plot_x))
plt.plot(np.array(theta_history), J(np.array(theta_history)), colorr, marker)
plt.show()封装
def gradient_descent(initial_theta, eta, epsilon1e-8):theta initial_thetatheta_history.append(initial_theta)while True:gradient dJ(theta)last_theta thetatheta theta - eta * gradienttheta_history.append(theta)if(abs(J(theta) - J(last_theta)) epsilon):breakdef plot_theta_history():plt.plot(plot_x, J(plot_x))plt.plot(np.array(theta_history), J(np.array(theta_history)), colorr, marker)plt.show()eta 0.01时
eta 0.01
theta_history []
gradient_descent(0, eta)
plot_theta_history()eta 0.001时
eta 0.001
theta_history []
gradient_descent(0, eta)
plot_theta_history()eta 0.8时
eta 0.8
theta_history []
gradient_descent(0, eta)
plot_theta_history()优化 避免死循环
def J(theta):try:return (theta-2.5)**2 - 1.except:return float(inf)
def gradient_descent(initial_theta, eta, n_iters 1e4, epsilon1e-8):theta initial_thetai_iter 0theta_history.append(initial_theta)while i_iter n_iters:gradient dJ(theta)last_theta thetatheta theta - eta * gradienttheta_history.append(theta)if(abs(J(theta) - J(last_theta)) epsilon):breaki_iter 1returneta 1.1时
eta 1.1
theta_history []
gradient_descent(0, eta, n_iters10)
plot_theta_history()多元线性回归中的梯度下降法 代码 生成数据
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(666)
x 2 * np.random.random(size100)
y x * 3. 4. np.random.normal(size100)
X x.reshape(-1, 1)
plt.scatter(x, y)
plt.show()使用梯度下降法训练
def J(theta, X_b, y):try:return np.sum((y - X_b.dot(theta))**2) / len(X_b)except:return float(inf)def dJ(theta, X_b, y):res np.empty(len(theta))res[0] np.sum(X_b.dot(theta) - y)for i in range(1, len(theta)):res[i] (X_b.dot(theta) - y).dot(X_b[:,i])return res * 2 / len(X_b)def gradient_descent(X_b, y, initial_theta, eta, n_iters 1e4, epsilon1e-8):theta initial_thetacur_iter 0while cur_iter n_iters:gradient dJ(theta, X_b, y)last_theta thetatheta theta - eta * gradientif(abs(J(theta, X_b, y) - J(last_theta, X_b, y)) epsilon):breakcur_iter 1return thetaX_b np.hstack([np.ones((len(x), 1)), x.reshape(-1,1)])
initial_theta np.zeros(X_b.shape[1])
eta 0.01theta gradient_descent(X_b, y, initial_theta, eta)封装 def fit_gd(self, X_train, y_train, eta0.01, n_iters1e4):根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_traindef J(theta, X_b, y):try:return np.sum((y - X_b.dot(theta)) ** 2) / len(y)except:return float(inf)def dJ(theta, X_b, y):res np.empty(len(theta))res[0] np.sum(X_b.dot(theta) - y)for i in range(1, len(theta)):res[i] (X_b.dot(theta) - y).dot(X_b[:, i])return res * 2 / len(X_b)def gradient_descent(X_b, y, initial_theta, eta, n_iters1e4, epsilon1e-8):theta initial_thetacur_iter 0while cur_iter n_iters:gradient dJ(theta, X_b, y)last_theta thetatheta theta - eta * gradientif (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) epsilon):breakcur_iter 1return thetaX_b np.hstack([np.ones((len(X_train), 1)), X_train])initial_theta np.zeros(X_b.shape[1])self._theta gradient_descent(X_b, y_train, initial_theta, eta, n_iters)self.intercept_ self._theta[0]self.coef_ self._theta[1:]return self全
import numpy as np
from .metrics import r2_scoreclass LinearRegression:def __init__(self):初始化Linear Regression模型self.coef_ Noneself.intercept_ Noneself._theta Nonedef fit_normal(self, X_train, y_train):根据训练数据集X_train, y_train训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_trainX_b np.hstack([np.ones((len(X_train), 1)), X_train])self._theta np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)self.intercept_ self._theta[0]self.coef_ self._theta[1:]return selfdef fit_gd(self, X_train, y_train, eta0.01, n_iters1e4):根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_traindef J(theta, X_b, y):try:return np.sum((y - X_b.dot(theta)) ** 2) / len(y)except:return float(inf)def dJ(theta, X_b, y):res np.empty(len(theta))res[0] np.sum(X_b.dot(theta) - y)for i in range(1, len(theta)):res[i] (X_b.dot(theta) - y).dot(X_b[:, i])return res * 2 / len(X_b)def gradient_descent(X_b, y, initial_theta, eta, n_iters1e4, epsilon1e-8):theta initial_thetacur_iter 0while cur_iter n_iters:gradient dJ(theta, X_b, y)last_theta thetatheta theta - eta * gradientif (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) epsilon):breakcur_iter 1return thetaX_b np.hstack([np.ones((len(X_train), 1)), X_train])initial_theta np.zeros(X_b.shape[1])self._theta gradient_descent(X_b, y_train, initial_theta, eta, n_iters)self.intercept_ self._theta[0]self.coef_ self._theta[1:]return selfdef predict(self, X_predict):给定待预测数据集X_predict返回表示X_predict的结果向量assert self.intercept_ is not None and self.coef_ is not None, \must fit before predict!assert X_predict.shape[1] len(self.coef_), \the feature number of X_predict must be equal to X_trainX_b np.hstack([np.ones((len(X_predict), 1)), X_predict])return X_b.dot(self._theta)def score(self, X_test, y_test):根据测试数据集 X_test 和 y_test 确定当前模型的准确度y_predict self.predict(X_test)return r2_score(y_test, y_predict)def __repr__(self):return LinearRegression() 线性回归中使用梯度下降法 优化代码 def dJ(theta, X_b, y):return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)import numpy as np
from .metrics import r2_scoreclass LinearRegression:def __init__(self):初始化Linear Regression模型self.coef_ Noneself.intercept_ Noneself._theta Nonedef fit_normal(self, X_train, y_train):根据训练数据集X_train, y_train训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_trainX_b np.hstack([np.ones((len(X_train), 1)), X_train])self._theta np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)self.intercept_ self._theta[0]self.coef_ self._theta[1:]return selfdef fit_gd(self, X_train, y_train, eta0.01, n_iters1e4):根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_traindef J(theta, X_b, y):try:return np.sum((y - X_b.dot(theta)) ** 2) / len(y)except:return float(inf)def dJ(theta, X_b, y):return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)def gradient_descent(X_b, y, initial_theta, eta, n_iters1e4, epsilon1e-8):theta initial_thetacur_iter 0while cur_iter n_iters:gradient dJ(theta, X_b, y)last_theta thetatheta theta - eta * gradientif (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) epsilon):breakcur_iter 1return thetaX_b np.hstack([np.ones((len(X_train), 1)), X_train])initial_theta np.zeros(X_b.shape[1])self._theta gradient_descent(X_b, y_train, initial_theta, eta, n_iters)self.intercept_ self._theta[0]self.coef_ self._theta[1:]return selfdef predict(self, X_predict):给定待预测数据集X_predict返回表示X_predict的结果向量assert self.intercept_ is not None and self.coef_ is not None, \must fit before predict!assert X_predict.shape[1] len(self.coef_), \the feature number of X_predict must be equal to X_trainX_b np.hstack([np.ones((len(X_predict), 1)), X_predict])return X_b.dot(self._theta)def score(self, X_test, y_test):根据测试数据集 X_test 和 y_test 确定当前模型的准确度y_predict self.predict(X_test)return r2_score(y_test, y_predict)def __repr__(self):return LinearRegression()
代码测试
import numpy as np
from sklearn import datasets
boston datasets.load_boston()
X boston.data
y boston.targetX X[y 50.0]
y y[y 50.0]
from playML.model_selection import train_test_splitX_train, X_test, y_train, y_test train_test_split(X, y, seed666)
from playML.LinearRegression import LinearRegressionlin_reg1 LinearRegression()
%time lin_reg1.fit_normal(X_train, y_train)
lin_reg1.score(X_test, y_test)使用梯度下降法
lin_reg2 LinearRegression()
lin_reg2.fit_gd(X_train, y_train)更改eta值
lin_reg2.fit_gd(X_train, y_train, eta0.000001)
lin_reg2.score(X_test, y_test)再优化
%time lin_reg2.fit_gd(X_train, y_train, eta0.000001, n_iters1e6)
lin_reg2.score(X_test, y_test)归一化
from sklearn.preprocessing import StandardScalerstandardScaler StandardScaler()
standardScaler.fit(X_train)
X_train_standard standardScaler.transform(X_train)lin_reg3 LinearRegression()
%time lin_reg3.fit_gd(X_train_standard, y_train)
X_test_standard standardScaler.transform(X_test)
lin_reg3.score(X_test_standard, y_test)随机梯度下降法 Stochastic Gradient Descent 模拟退化的思想 代码 批量梯度下降法
import numpy as np
import matplotlib.pyplot as plt
m 100000x np.random.normal(sizem)
X x.reshape(-1,1)
y 4.*x 3. np.random.normal(0, 3, sizem)
def J(theta, X_b, y):try:return np.sum((y - X_b.dot(theta)) ** 2) / len(y)except:return float(inf)def dJ(theta, X_b, y):return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)def gradient_descent(X_b, y, initial_theta, eta, n_iters1e4, epsilon1e-8):theta initial_thetacur_iter 0while cur_iter n_iters:gradient dJ(theta, X_b, y)last_theta thetatheta theta - eta * gradientif (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) epsilon):breakcur_iter 1return theta
X_b np.hstack([np.ones((len(X), 1)), X])
initial_theta np.zeros(X_b.shape[1])
eta 0.01
theta gradient_descent(X_b, y, initial_theta, eta)随机梯度下降法
def dJ_sgd(theta, X_b_i, y_i):return 2 * X_b_i.T.dot(X_b_i.dot(theta) - y_i)def sgd(X_b, y, initial_theta, n_iters):t0, t1 5, 50def learning_rate(t):return t0 / (t t1)theta initial_thetafor cur_iter in range(n_iters):rand_i np.random.randint(len(X_b))gradient dJ_sgd(theta, X_b[rand_i], y[rand_i])theta theta - learning_rate(cur_iter) * gradientreturn thetaX_b np.hstack([np.ones((len(X), 1)), X])
initial_theta np.zeros(X_b.shape[1])
theta sgd(X_b, y, initial_theta, n_itersm//3)封装
def fit_sgd(self, X_train, y_train, n_iters50, t05, t150):根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_trainassert n_iters 1def dJ_sgd(theta, X_b_i, y_i):return X_b_i * (X_b_i.dot(theta) - y_i) * 2.def sgd(X_b, y, initial_theta, n_iters5, t05, t150):def learning_rate(t):return t0 / (t t1)theta initial_thetam len(X_b)for i_iter in range(n_iters):indexes np.random.permutation(m)X_b_new X_b[indexes,:]y_new y[indexes]for i in range(m):gradient dJ_sgd(theta, X_b_new[i], y_new[i])theta theta - learning_rate(i_iter * m i) * gradientreturn thetaimport numpy as np
from .metrics import r2_scoreclass LinearRegression:def __init__(self):初始化Linear Regression模型self.coef_ Noneself.intercept_ Noneself._theta Nonedef fit_normal(self, X_train, y_train):根据训练数据集X_train, y_train训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_trainX_b np.hstack([np.ones((len(X_train), 1)), X_train])self._theta np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)self.intercept_ self._theta[0]self.coef_ self._theta[1:]return selfdef fit_bgd(self, X_train, y_train, eta0.01, n_iters1e4):根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_traindef J(theta, X_b, y):try:return np.sum((y - X_b.dot(theta)) ** 2) / len(y)except:return float(inf)def dJ(theta, X_b, y):return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)def gradient_descent(X_b, y, initial_theta, eta, n_iters1e4, epsilon1e-8):theta initial_thetacur_iter 0while cur_iter n_iters:gradient dJ(theta, X_b, y)last_theta thetatheta theta - eta * gradientif (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) epsilon):breakcur_iter 1return thetaX_b np.hstack([np.ones((len(X_train), 1)), X_train])initial_theta np.zeros(X_b.shape[1])self._theta gradient_descent(X_b, y_train, initial_theta, eta, n_iters)self.intercept_ self._theta[0]self.coef_ self._theta[1:]return selfdef fit_sgd(self, X_train, y_train, n_iters50, t05, t150):根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型assert X_train.shape[0] y_train.shape[0], \the size of X_train must be equal to the size of y_trainassert n_iters 1def dJ_sgd(theta, X_b_i, y_i):return X_b_i * (X_b_i.dot(theta) - y_i) * 2.def sgd(X_b, y, initial_theta, n_iters5, t05, t150):def learning_rate(t):return t0 / (t t1)theta initial_thetam len(X_b)for i_iter in range(n_iters):indexes np.random.permutation(m)X_b_new X_b[indexes,:]y_new y[indexes]for i in range(m):gradient dJ_sgd(theta, X_b_new[i], y_new[i])theta theta - learning_rate(i_iter * m i) * gradientreturn thetaX_b np.hstack([np.ones((len(X_train), 1)), X_train])initial_theta np.random.randn(X_b.shape[1])self._theta sgd(X_b, y_train, initial_theta, n_iters, t0, t1)self.intercept_ self._theta[0]self.coef_ self._theta[1:]return selfdef predict(self, X_predict):给定待预测数据集X_predict返回表示X_predict的结果向量assert self.intercept_ is not None and self.coef_ is not None, \must fit before predict!assert X_predict.shape[1] len(self.coef_), \the feature number of X_predict must be equal to X_trainX_b np.hstack([np.ones((len(X_predict), 1)), X_predict])return X_b.dot(self._theta)def score(self, X_test, y_test):根据测试数据集 X_test 和 y_test 确定当前模型的准确度y_predict self.predict(X_test)return r2_score(y_test, y_predict)def __repr__(self):return LinearRegression()
真实使用我们自己的SGD
from sklearn import datasetsboston datasets.load_boston()
X boston.data
y boston.targetX X[y 50.0]
y y[y 50.0]
from playML.model_selection import train_test_splitX_train, X_test, y_train, y_test train_test_split(X, y, seed666)
from sklearn.preprocessing import StandardScalerstandardScaler StandardScaler()
standardScaler.fit(X_train)
X_train_standard standardScaler.transform(X_train)
X_test_standard standardScaler.transform(X_test)
from playML.LinearRegression import LinearRegressionlin_reg LinearRegression()
lin_reg.fit_sgd(X_train_standard, y_train, n_iters100)
lin_reg.score(X_test_standard, y_test)scikit-learn中的SGD
from sklearn.linear_model import SGDRegressorsgd_reg SGDRegressor()
sgd_reg.fit(X_train_standard, y_train)
sgd_reg.score(X_test_standard, y_test)sgd_reg SGDRegressor(n_iter50)
sgd_reg.fit(X_train_standard, y_train)
sgd_reg.score(X_test_standard, y_test)关于梯度的调试 生成数据
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(666)
X np.random.random(size(1000, 10))true_theta np.arange(1, 12, dtypefloat)
X_b np.hstack([np.ones((len(X), 1)), X])
y X_b.dot(true_theta) np.random.normal(size1000)def J(theta, X_b, y):try:return np.sum((y - X_b.dot(theta))**2) / len(X_b)except:return float(inf)def dJ_math(theta, X_b, y):return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)def dJ_debug(theta, X_b, y, epsilon0.01):res np.empty(len(theta))for i in range(len(theta)):theta_1 theta.copy()theta_1[i] epsilontheta_2 theta.copy()theta_2[i] - epsilonres[i] (J(theta_1, X_b, y) - J(theta_2, X_b, y)) / (2 * epsilon)return resdef gradient_descent(dJ, X_b, y, initial_theta, eta, n_iters 1e4, epsilon1e-8):theta initial_thetacur_iter 0while cur_iter n_iters:gradient dJ(theta, X_b, y)last_theta thetatheta theta - eta * gradientif(abs(J(theta, X_b, y) - J(last_theta, X_b, y)) epsilon):breakcur_iter 1return thetaX_b np.hstack([np.ones((len(X), 1)), X])
initial_theta np.zeros(X_b.shape[1])
eta 0.01%time theta gradient_descent(dJ_debug, X_b, y, initial_theta, eta)
theta%time theta gradient_descent(dJ_math, X_b, y, initial_theta, eta)
theta