阜阳微网站建设多少钱,多语言网站是怎么做的,网站建设的体会,i深圳网站建设作者 | 包云岗责编 | 伍杏玲本文经作者授权转载自包云岗知乎【编者按】近日#xff0c;中国科学院大学五位本科生的硬核“毕业证”引发IT圈热议#xff0c;在“一生一芯”培养计划下#xff0c;由五位2016级本科生主导完成一款64位RISC-V处理器SoC芯片设计并实现流片#x… 作者 | 包云岗责编 | 伍杏玲本文经作者授权转载自包云岗知乎【编者按】近日中国科学院大学五位本科生的硬核“毕业证”引发IT圈热议在“一生一芯”培养计划下由五位2016级本科生主导完成一款64位RISC-V处理器SoC芯片设计并实现流片命名为“果壳NutShell”。该款芯片成功运行Linux操作系统以及学生自己编写的国科大教学操作系统UCAS-Core。6 月 2 日 “一生一芯”团队学生代表向中国科学院大学毕业答辩委员会演示处理器芯片的功能交出这份超预期的本科毕业设计“答卷”实现带着自己设计的处理器芯片毕业目标。目前该话题在知乎上已有超百万浏览笔者曾在《我在做开源芯片》有幸采访过该计划负责人、中科院计算所研究员包云岗这几年来他带领团队研究开源芯片欲尝试用开源思路改变中国芯片被“掐脖子”的局面“一生一芯”则是关键的计划之一下面由包云岗亲自阐述这个用代码照亮未来的故事酝酿2018年11月8日乌镇世界互联网大会经过9个月筹备工作中国开发指令生态RISC-V联盟正式成立。晚上在乌镇的一家餐馆庆祝时坐在我边上的一位老师问了个问题“以后打算怎么做开源芯片生态”其实这也是在2018年期间我经常问自己的一个问题我有一个很粗的想法——能不能让学生参与到开源芯片生态建设中——经常会浮现出来。听了那位老师的问题我在脑海中又浮现出这个想法然后就在饭桌上一边整理思路一边介绍如何将教学和开源芯片结合起来。这应该是“一生一芯”计划的最初萌芽。 那时还没想到“一生一芯”这个名字但已经大致形成了这样的目标——让本科生也能做处理器芯片让本科生能带着自己设计的处理器芯片毕业。但联盟成立后这个想法并没有实质性推动。2019年5月16日华为被美国列入实体名单全国震惊。各界都在想能为华为做些什么我们也在思考。但是我们是做开源芯片华为暂时还用不上我们采用的是开放的RISC-V指令集而华为的主力芯片都是基于ARM。看起来我们是无法帮助华为解决燃眉之急了。但和华为专家交流后他们说短期内的需求华为自己基本能应对他们更需要的是中长期的先进技术而最需要的是处理器芯片设计人才。因为华为的芯片架构设计团队很多在美国硅谷由于美国的出口管制虽然是华为的全资子公司但其技术也不能输入到华为总部。这导致华为在美国的芯片设计人才不能再发挥作用但在国内又招不到这样的人才。这才是华为的心腹之患。华为在国内找不到处理器芯片设计人才的情况是在意料之中。2017年我曾安排组里的学生统计过2008~2017十年的体系结构顶级会议ISCA论文第一作者的情况最后统计数据发现这些优秀人才 85%选择在美国就业仅有 4%在中国就业差距巨大。这和国内很多大学不开展处理器芯片设计相关教学与研究密切相关。事实上类似的人才危机美国也曾经历过1982 年全美上千所大学中只有不到100 位教授和学生从事半导体相关的研究 。为了应对人才危机美国国防部高级研究计划署 (DARPA) 在1981年启动MOSIS 项目为大学提供流片服务通过MPW模式大幅降低芯片设计门槛。30 余年来MOSIS为大学和研究机构流了60000多款芯片培养了数万名学生。由此可见降低芯片设计门槛让学生能设计自己的芯片并流片可大幅提高人才培养效率。这和我此前的构想和目标完全一致。我们不能再耽误了要加速人才培养计划。 正式启动我自作主张地给这个计划起了个名字“一生一芯”。初衷是希望有一天能让每一个学生都能带着自己设计的芯片毕业不管未来是不是真得能实现这至少听起来是一个美好的理想而且还有一点烂漫——后来很多人听到这个名字第一印象大多是“一辈子做一颗芯片”。还有女生有更浪漫地理解“一生一心一意爱一人”。不管如何看来大家对这个名字似乎还都不反感。然后我又联系了几位国科大本科生询问他们愿不愿意参加这个“一生一芯”计划当小白鼠。出于意料地是这些准00后98/99出生都表示愿意挑战一下愿意当小白鼠。6月20日我在开源芯片工作组群向大家宣布启动“一生一芯”计划这并不是研制产品级芯片而是一次教学实践。很快唐丹老师为未来的芯片起好了内部代号“COOSCA”三门课Computer Organization/Operating System/Computer Architecture的缩写。随后开始组建教学团队随着项目的进行教学团队也在不断扩大唐丹老师和工程师刘彤负责SoC架构设计指导余子濠老师负责处理器核设计其实子濠还是博士生但因为在国内计算机系统教学领域很有名所以我们也半开玩笑地叫他老师张科老师负责项目协调、与国科大对接并和常轶松老师、赵然老师一起在FPGA模拟仿真方面进行指导解壁伟老师和李峄工程师在后端物理设计上给予支持深圳大学蔡晔老师则参与帮助设计PCB板卡另外蒋德钧老师和王卅老师是国科大本科操作系统任课老师在操作系统方面给予支持两位博士生王诲喆与徐易难也担任起助教的角色帮助答疑解惑。而我自己则更像是一个啦啦队长给大家打鸡血。 教学团队开始行动起来了大家讨论制定总体方案确定技术路线选择基础平台搭建开发环境选择流片工艺和班车……参加首期“一生一芯”计划的同学也最终确定一共有五位他们是金越、王华强、王凯帆、张林隽和张紫飞。这五位同学通过了计算所暑期夏令营面试均被录取为计算所研究生其中金越导师是陈明宇研究员王华强导师是蒋德钧副研究员王凯帆是孙凝晖院士张林隽和张紫飞的导师则是我。但接下来的时间他们将组成一个团队一起挑战带着自己设计的处理器芯片毕业这个任务。8月20日当唐丹老师和解壁伟老师终于落实中芯国际110nm工艺的流片渠道后“一生一芯”计划一切准备就绪。8月27日参加“一生一芯”计划的首批五位同学和教学团队一起在我的办公室开了一次简单但意义重大的动员大会。“一生一芯”计划正式启动四个月高强度开发开弓没有回头箭。唐丹老师确定了最合适的流片班车是12月17日距离动员大会不到4个月这样芯片能在4月份完成封装返回进行测试。如果一切顺利那就可以赶上五月底或六月初的国科大本科毕业答辩到时可以在答辩现场展示芯片。但是如果错过这趟班车那就需要再等2个月赶下一趟班车这就意味着芯片不可能在毕业答辩时返回。“一生一芯”团队需要跟时间赛跑。我们在确定总体方案时有两个决定一是用Chisel开发此前我们实验室做过Chisel与Verilog在开发效率和开发质量上的对比实验证明Chisel能数倍替身开发速度同时开发质量不比Verilog差相关结果发表在论文《芯片敏捷开发实践标签化RISC-V》。二是以余子濠为南大开发的一款教学RISC-V处理器核为基础进行改进这主要是因为余子濠在开发这款处理器的过程中构建了丰富的工具包括NEMU软件模拟器、指令差分测试框架等这些都有助于加速开发。而教学处理器功能还很基础要能运行Linux并且支持流片需要新增大量新功能包括RV64IM/RVC/RVA等指令扩展、时钟中断、硬件填充的TLB、M/S/U特权级、缺页异常、Cache预取、SDRAM控制器、外围I/O设备……这是一种贴近实战的开发模式——实际的产品研发和科研工作中往往不是总是从头开始更多的是在已有的基础上增加新的功能提高性能等等。这就需要培养学生“理解-消化-创新”的能力。接下来是4个月高强度的开发然而有些关键模块的工作原理是课堂上没有介绍过的同学们还需要进行一些探索性的尝试有时甚至需要将此前的设计推倒重来他们会因此感到焦虑或沮丧这对他们的心态也是很大的考验。教学团队不仅仅需要给予技术指导还需要对学生的心态进行正确的引导告诉他们不确定性是探索过程中的客观规律然后引导他们去总结探索失败的经验去深刻地分析当前方案不可行的原因从而加深对问题的理解让他们正确认识到探索失败的意义。虽然任务极具挑战但不断有进展。每取得一个小里程碑大家都会记录下那个时刻精确到分钟因为觉得未来有一天也许用得上。后来这些时刻真的用上了就是宣传视频中的那条时间线。这个过程中国科大各方给了很大的支持从校领导到本科部、计算机学院各级都很关心和重视在中科院计算所所长孙凝晖院士、主管教学的陈熙霖副所长、教育处李琳老师等都给予全方位的保障与支持。这也赋予了“一生一芯”团队某种使命感更激发了大家的斗志。12月19日COOSCA 1.0芯片版图冻结。当唐丹老师告知版图已经正式提交大家就如高考交卷终于舒了一口气却又悬起了一颗心。 疫情中的测试验证等待芯片返回是一种既期盼又担忧的感觉。这种感觉又进一步被突如其来的疫情放大了。当1月23日宣布武汉封城后疫情不断发展我们也越来越担忧正在流片中的那颗COOSCA芯片还能不能按时回来还能不能赶上毕业答辩。出乎意外的是芯片基本按照预期时间返回了在这里我们要对中芯国际和封测企业的员工们表达深深的敬意然而疫情还是对测试工作产生了影响因为学生不能返校无法到在现场调试与测试。余子濠、蔡晔和刘彤三位挺身而出协助调试测试工作。测试验证工作其实也是非常具有挑战性因为从底层PCB版图、内存颗粒到中间处理器设计、到上层操作系统、应用软件每个层次都可能出问题。哪怕一个小问题都会造成芯片无法正常工作。经过大约1个月的调试测试终于证明芯片一切正常可以启动Linux操作系统。但也发现了芯片的I/O模块存在Bug影响了SD卡的读写。测试验证也是充满了戏剧性。一开始调试时比较保守将芯片降到了50MHz没想到系统出现了很多问题。后来把芯片频率从50MHz跳到了200MHz结果原来很多问题都消失了能稳定地运行Linux。又进一步把频率提高到了350MHz启动Linux出现了问题但是可以稳定地运行RT-Thread。这个频率和后端仿真基本一致。这也验证了用Chisel开发和Verilog开发对后端物理设计并没有很大的影响。 毕业答辩演示2020年6月2日国科大本科生毕业设计答辩日。五位同学分别介绍了他们基于COOSCA处理器核的进一步优化工作王华强《基于RISC-V的乱序多发射处理器设计》张紫飞《基于RISC-V的向量处理单元设计》张林隽《开源处理器分支预测器的设计与性能优化》金越《基于敏捷开发语言的开源处理器非阻塞缓存的设计与实现》王凯帆《RISC-V平台下的二进制翻译与优化》其中王凯帆的毕业设计中使用了COOSCA核也是他们自己设计的核首次在科研中得到应用。 王华强同学代表“一生一芯”团队展示了COOSCA芯片的功能。他进一步又将这个核改进为乱序多发射在FPGA上进行了测试验证结果显示比COOSCA核的IPC提升了一倍。他的毕业设计也获得了国科大校级优秀毕业设计。 五位本科生实现了带着自己设计的处理器芯片毕业这个目标后来王凯帆又将国科大操作系统课程上同学们自己编写的UCAS-Core移植到了COOSCA核上实现了用自己写的CPU运行自己写的操作系统这个小目标。 “果壳”公开亮相CRVA联盟将于7月18日召开RISC-V年中技术研讨会“一生一芯”团队决定让王华强提交一份设计报告正式向社区介绍COOSCA核的设计。提交前大家觉得COOSCA是一个内部代号现在要公开亮相了应该有个正式一点的名字。同学们讨论后决定改名为“果壳NutShell”和国科大的“国科”同音。可以看得出来他们对国科大确实有些深厚的情感。五位同学开始一起为“果壳”的首次亮相做了大量准备工作王凯帆整理了代码以及相应的文档并在GitHub上开源王华强整理了一份介绍“果壳”设计的报告PPT。7月18日王华强在技术研讨会第二个出场介绍了果壳的设计细节和一些开发过程中的经验体会。 果壳”设计开源链接https://github.com/OSCPU/NutShell7月22日王华强又收到了“果壳”被RISC-V Global Forum被接收的通知。9月3日王华强同学将代表团队向全球业界介绍“果壳”的设计这也是“果壳”首次在国际舞台上亮相。看了一下这次RISC-V全球论坛的日程报告均来自世界各地的业界资深专家还包括图灵奖得主David Patterson教授。国科大本科生能登上RISC-V全球论坛介绍他们设计的处理器核这在国际上也是非常难得了。作为教学团队成员我们内心也有一份自豪。 收获与体会我们在调研中发现和“一生一芯”计划目标最接近的是2017年春季开始UC Berkeley开了一门新课 EE194/290C “28nm SoC for IoT”目标是设计一个SoC芯片集成各种IP模块包括一个Berkeley开发的RISC-V Rocket处理器核。这门课以流片为目标2017年春由9位本科生与1位研究生参加通过1学期完成了流片但未提供信息证明芯片能正常工作。伯克利EE194/290C这门课是根据已有的RISC-V核和其他IP核进行SoC集成。而“一生一芯”与EE194/290C课程的区别在于要让本科生直接设计一款64位RISC-V处理器然后在这个核的基础上学生们需进一步集成与验证一系列外围IP最终形成一个能运行Linux操作系统的SoC芯片这极具挑战。一年前我们不知道这个目标是不是可行最终能不能成功。但如今我们探了回路并且把路走通了证明是可行的。这个摸索的过程积累了不少经验也充满了教训。五位同学作为小白鼠参与首期“一生一芯”计划成长了很多。他们不仅在项目中掌握了处理器芯片设计所需的专业知识也锻炼出了优秀人才所具备的出色心理素质。一起来看看他们的感悟如今这五位同学正在参与一个更有挑战的项目开发一款高性能乱序多发射RISC-V处理器核的设计。一年前他们在做“果壳”时还有些吃力现在已是这个新团队中的骨干和其他博士生和工程师们一起攻坚克难。去掉团队中蔡晔、唐丹和我这三位40岁以上的中年人这支队伍平均年龄只有23.1岁但他们表现出来的战斗力却是惊人的——不到三个星期就从头开始完成了乱序处理器主流水线的设计与实现并且通过CoreMark测试。等到他们30岁时就可以说已经是处理器芯片和计算机系统设计领域的“老兵”了。那时他们将进入各自的工作岗位也许去工业界研发产品也许在学术界做科研。相信那时他们的创造力会得到更大的发挥和展现。我对这批年轻人的未来充满期待。 从教学团队角度来看除了前期在总体方案、环境平台等方面需做好充分准备以外在开发过程中有四方面指导尤其重要以下为余子濠老师总结项目规划和分工。学生在开发初期不一定能完全掌握芯片中各个模块之前的关系此时需要教师对学生的工作进行较为细致的分工让学生通过一些初期的任务来认识芯片的全貌。随着项目的进行学生对芯片的认识逐渐清晰之后教师进行的分工可以向粗略的方向转变向学生提出清晰的任务目标并让学生尝试提出自己的解决方案。引导学生了解项目中的每一处细节。芯片是一个复杂的系统学生需对芯片每一个模块的行为都有所了解还需要了解程序在芯片上运行的每一处细节。但是学生一开始往往不能从课程设计的模式中转变过来认为只需要了解自己任务相关的模块即可不去主动了解其它模块不去了解软件层次的行为。这导致他们在遇到问题会想不出解决的思路。此时教师需要对学生进行引导让他们主动去认识芯片甚至是软件行为的每一处细节。在遇到困难的时候这些认识就会成为解决问题的线索顺着线索去追溯问题的过程又会进一步加深学生对这些认识的理解从而形成良性循环。指导学生使用在课堂学习的知识解决开发中遇到的实际问题。芯片开发过程中可能会遇到各种困难一些表面上看像是硬件设计的问题最终可能是软件配置错误造成的。解决这些困难需要学生站在全局的视角来分析问题并与课堂上学习到的知识建立联系从中寻找解决问题的可能性。教师需要引导学生根据观测到的现象进行思维的发散主动思考可能与哪些学过的知识建立联系。如果学生面对一些比较困难的问题也会需要教师进行点拨。引导学生正确认识探索过程中的不确定性。在一款功能完整的芯片有一些关键模块的原理是课堂上没有详细介绍的学生要正确地实现这些模块需要一个探索的过程。这意味着学生不能像课程作业那样按部就班地完成而是会经历设计方案的调整甚至是整个方案的推倒重来。这容易导致学生感到焦虑或沮丧因此教师需要对学生的心态进行正确的引导告诉他们不确定性是探索过程中的客观规律然后引导学生去总结探索失败的经验去深刻地分析当前方案不可行的原因从而加深对问题的理解让学生正确认识到探索失败的意义。来源https://www.zhihu.com/question/409298856/answer/1363569013更多推荐阅读没想到Unicode 字符还能这样玩程序员必备基础Git 命令全方位学习MongoDB 计划从“Data Sprawl”中逃脱V神演讲内容曝光Defi、挖矿、行业应用更多主题大揭秘Python 还能实现图片去雾FFA 去雾算法、暗通道去雾算法用起来 | 附代码