当前位置: 首页 > news >正文

大型公司网站建设目标部署wordpress最应该用什么os

大型公司网站建设目标,部署wordpress最应该用什么os,长沙官网优化多少钱,网络规划设计师论文背别人的行么几周前#xff0c;我写了一篇博客文章#xff0c;介绍了如何使用scikit-learn在HIMYM成绩单上运行TF / IDF#xff0c;以按情节找到最重要的短语#xff0c;然后我很好奇在Neo4j中很难做到。 我首先将Wikipedia的TF / IDF示例之一翻译为cypher#xff0c;以查看该算法的外… 几周前我写了一篇博客文章介绍了如何使用scikit-learn在HIMYM成绩单上运行TF / IDF以按情节找到最重要的短语然后我很好奇在Neo4j中很难做到。 我首先将Wikipedia的TF / IDF示例之一翻译为cypher以查看该算法的外观 WITH 3 as termFrequency, 2 AS numberOfDocuments, 1 as numberOfDocumentsWithTerm WITH termFrequency, log10(numberOfDocuments / numberOfDocumentsWithTerm) AS inverseDocumentFrequency return termFrequency * inverseDocumentFrequency0.9030899869919435 接下来我需要检查HIMYM情节成绩单并提取每个情节中的短语及其对应的计数。 我使用scikit-learn的CountVectorizer进行了此操作并将结果写入了CSV文件。 这是该文件的预览 $ head -n 10 data/import/words_scikit.csv EpisodeId,Phrase,Count 1,2005,1 1,2005 seven,1 1,2005 seven just,1 1,2030,3 1,2030 kids,1 1,2030 kids intently,1 1,2030 narrator,1 1,2030 narrator kids,1 1,2030 son,1 现在使用LOAD CSV工具将其导入Neo4j // phrases USING PERIODIC COMMIT 1000 LOAD CSV WITH HEADERS FROM file:///Users/markneedham/projects/neo4j-himym/data/import/words_scikit.csv AS row MERGE (phrase:Phrase {value: row.Phrase});// episode - phrase USING PERIODIC COMMIT 1000 LOAD CSV WITH HEADERS FROM file:///Users/markneedham/projects/neo4j-himym/data/import/words_scikit.csv AS row MATCH (phrase:Phrase {value: row.Phrase}) MATCH (episode:Episode {id: TOINT(row.EpisodeId)}) MERGE (episode)-[:CONTAINED_PHRASE {times:TOINT(row.Count)}]-(phrase); 现在所有数据都可以转换为TF / IDF查询以利用我们的图表。 我们将从第1集开始 match (e:Episode) WITH COUNT(e) AS numberOfDocuments match (p:Phrase)-[r:CONTAINED_PHRASE]-(e:Episode {id: 1}) WITH numberOfDocuments, p, r.times AS termFrequency MATCH (p)-[:CONTAINED_PHRASE]-(otherEpisode) WITH p, COUNT(otherEpisode) AS numberOfDocumentsWithTerm, numberOfDocuments, termFrequency WITH p, numberOfDocumentsWithTerm, log10(numberOfDocuments / numberOfDocumentsWithTerm) AS inverseDocumentFrequency, termFrequency, numberOfDocuments RETURN p.value, termFrequency, numberOfDocumentsWithTerm, inverseDocumentFrequency, termFrequency * inverseDocumentFrequency AS score ORDER BY score DESC LIMIT 10 -----------------------------------------------------------------------------------| p.value | termFrequency | numberOfDocumentsWithTerm | inverseDocumentFrequency | score |-----------------------------------------------------------------------------------| olives | 18 | 2 | 2.0170333392987803 | 36.306600107378046 || yasmine | 13 | 1 | 2.3180633349627615 | 30.1348233545159 || signal | 11 | 5 | 1.6127838567197355 | 17.740622423917088 || goanna | 10 | 4 | 1.7160033436347992 | 17.16003343634799 || flashback date | 6 | 1 | 2.3180633349627615 | 13.908380009776568 || scene | 17 | 37 | 0.6989700043360189 | 11.88249007371232 || flashback date robin | 5 | 1 | 2.3180633349627615 | 11.590316674813808 || ted yasmine | 5 | 1 | 2.3180633349627615 | 11.590316674813808 || smurf pen1s | 5 | 2 | 2.0170333392987803 | 10.085166696493902 || eye patch | 5 | 2 | 2.0170333392987803 | 10.085166696493902 |-----------------------------------------------------------------------------------10 rows 我们计算出的分数不同于scikit-learn的分数但是相对顺序似乎不错所以很好。 在Neo4j中计算这一点的整洁之处在于我们现在可以更改等式的“逆文档”部分例如找出一个季节而不是一个情节中最重要的短语 match (:Season) WITH COUNT(*) AS numberOfDocuments match (p:Phrase)-[r:CONTAINED_PHRASE]-(:Episode)-[:IN_SEASON]-(s:Season {number: 1}) WITH p, SUM(r.times) AS termFrequency, numberOfDocuments MATCH (p)-[:CONTAINED_PHRASE]-(otherEpisode)-[:IN_SEASON]-(s:Season) WITH p, COUNT(DISTINCT s) AS numberOfDocumentsWithTerm, termFrequency, numberOfDocuments WITH p, numberOfDocumentsWithTerm, log10(numberOfDocuments / numberOfDocumentsWithTerm) AS inverseDocumentFrequency, termFrequency, numberOfDocuments RETURN p.value, termFrequency, numberOfDocumentsWithTerm, inverseDocumentFrequency, termFrequency * inverseDocumentFrequency AS score ORDER BY score DESC LIMIT 10 -----------------------------------------------------------------------------------| p.value | termFrequency | numberOfDocumentsWithTerm | inverseDocumentFrequency | score |-----------------------------------------------------------------------------------| moby | 46 | 1 | 0.9542425094393249 | 43.895155434208945 || int | 71 | 3 | 0.47712125471966244 | 33.87560908509603 || ellen | 53 | 2 | 0.6020599913279624 | 31.909179540382006 || claudia | 104 | 4 | 0.3010299956639812 | 31.307119549054043 || ericksen | 59 | 3 | 0.47712125471966244 | 28.150154028460083 || party number | 29 | 1 | 0.9542425094393249 | 27.67303277374042 || subtitle | 27 | 1 | 0.9542425094393249 | 25.76454775486177 || vo | 47 | 3 | 0.47712125471966244 | 22.424698971824135 || ted vo | 47 | 3 | 0.47712125471966244 | 22.424698971824135 || future ted vo | 45 | 3 | 0.47712125471966244 | 21.47045646238481 |-----------------------------------------------------------------------------------10 rows 从该查询中我们了解到“ Moby”在整个系列中仅被提及一次实际上所有提及都在同一集中 。 “ int”的出现似乎更多是数据问题–在某些情节中成绩单描述了位置但在许多情节中却没有 $ ack -iw int data/import/sentences.csv 2361,8,1,8,INT. LIVING ROOM, YEAR 2030 2377,8,1,8,INT. CHINESE RESTAURANT 2395,8,1,8,INT. APARTMENT 2412,8,1,8,INT. APARTMENT 2419,8,1,8,INT. BAR 2472,8,1,8,INT. APARTMENT 2489,8,1,8,INT. BAR 2495,8,1,8,INT. APARTMENT 2506,8,1,8,INT. BAR 2584,8,1,8,INT. APARTMENT 2629,8,1,8,INT. RESTAURANT 2654,8,1,8,INT. APARTMENT 2682,8,1,8,INT. RESTAURANT 2689,8,1,8,(Robin gets up and leaves restaurant) INT. HOSPITAL WAITING AREA “ vo”代表语音应该在停用词中删除它因为它不会带来太多价值。 之所以显示在这里是因为这些笔录在表示Future Ted说话时的方式不一致。 让我们看一下最后一个赛季看看票价如何 match (:Season) WITH COUNT(*) AS numberOfDocuments match (p:Phrase)-[r:CONTAINED_PHRASE]-(:Episode)-[:IN_SEASON]-(s:Season {number: 9}) WITH p, SUM(r.times) AS termFrequency, numberOfDocuments MATCH (p)-[:CONTAINED_PHRASE]-(otherEpisode:Episode)-[:IN_SEASON]-(s:Season) WITH p, COUNT(DISTINCT s) AS numberOfDocumentsWithTerm, termFrequency, numberOfDocuments WITH p, numberOfDocumentsWithTerm, log10(numberOfDocuments / numberOfDocumentsWithTerm) AS inverseDocumentFrequency, termFrequency, numberOfDocuments RETURN p.value, termFrequency, numberOfDocumentsWithTerm, inverseDocumentFrequency, termFrequency * inverseDocumentFrequency AS score ORDER BY score DESC LIMIT 10 -----------------------------------------------------------------------------------| p.value | termFrequency | numberOfDocumentsWithTerm | inverseDocumentFrequency | score |-----------------------------------------------------------------------------------| ring bear | 28 | 1 | 0.9542425094393249 | 26.718790264301095 || click options | 26 | 1 | 0.9542425094393249 | 24.810305245422448 || thank linus | 26 | 1 | 0.9542425094393249 | 24.810305245422448 || vow | 39 | 2 | 0.6020599913279624 | 23.480339661790534 || just click | 24 | 1 | 0.9542425094393249 | 22.901820226543798 || rehearsal dinner | 23 | 1 | 0.9542425094393249 | 21.947577717104473 || linus | 36 | 2 | 0.6020599913279624 | 21.674159687806647 || just click options | 22 | 1 | 0.9542425094393249 | 20.993335207665147 || locket | 32 | 2 | 0.6020599913279624 | 19.265919722494797 || cassie | 19 | 1 | 0.9542425094393249 | 18.13060767934717 |----------------------------------------------------------------------------------- BarneyRobin的婚礼有几个特定的​​短语“誓言”“圆环熊”“排练晚宴”因此将这些放在首位是有道理的。 这里的“ linus”主要是指酒吧中与Lily进行交互的服务器尽管对笔录进行了快速搜索后发现她还有一个Linus叔叔 $ ack -iw linus data/import/sentences.csv | head -n 5 18649,61,3,17,Lily: Why dont we just call Duluth Mental Hospital and say my Uncle Linus can live with us? 59822,185,9,1,Linus. 59826,185,9,1,Are you my guy, Linus? 59832,185,9,1,Thank you Linus. 59985,185,9,1,Thank you, Linus. ... 通过执行此练习我认为TF / IDF是探索非结构化数据的一种有趣方式但是对于一个对我们来说真的很有趣的短语它应该出现在多个情节/季节中。 实现该目标的一种方法是对这些功能进行更多加权因此我将在下一步进行尝试。 如果您想看看并加以改进则本文中的所有代码都位于github上 。 翻译自: https://www.javacodegeeks.com/2015/03/neo4j-tfidf-and-variants-with-cypher.html
http://www.zqtcl.cn/news/745228/

相关文章:

  • 汽车网站建设规划书网站首页版式
  • 国外网站推广方法wnmp 搭建WordPress
  • 网站建设流程 文档企业网上办事大厅
  • .net怎么做网站域名备案注销流程
  • 检测网站建设网站搭建注意事项
  • 河北建设工程信息网站网站的建设要多少钱
  • 玉林住房和城乡建设局网站官网google广告在wordpress
  • 海淀网站建设公司wordpress 招聘网站模板
  • 手机网站在哪里找到网上能免费做网站发布叼
  • 网站设置英文怎么说广州优质网站建设案例
  • 外贸怎样做网站临汾花果街网站建设
  • 专业集团门户网站建设方案南昌医院网站建设
  • 用php做美食网站有哪些新建网站如何做关键词
  • 企业网站建设招标微信公众平台官网登录入口网页版
  • 网站宣传图网站程序预装
  • 网站设计论文选题seo排名优化推广报价
  • wordpress图床网站百度链接收录
  • 八年级信息网站怎么做电商网站的支付接入该怎么做呢
  • wordpress 的应用大兴安岭地网站seo
  • 网站建站作业做直播网站赚钱
  • 网站建设虍金手指花总简单免费制作手机网站
  • 京东网站是刘强冬自己做的吗献县网站建设价格
  • 余姚什么网站做装修比较好邢台企业做网站哪儿好
  • 网站建设后端国外购物平台排行榜前十名
  • 西安做百度推广网站 怎样备案简述商务网站建设
  • 如何建设本地网站东莞常平限电通知2021
  • 成都网站建设cdajcx重庆推广网站排名价格
  • 建网站的价格网店设计方案计划书
  • 长沙做公司网站如何制作个人网站教程
  • 做一个网站怎么做的仿qq网站程序