当前位置: 首页 > news >正文

做收费类网站站长湖北建设厅政务网站

做收费类网站站长,湖北建设厅政务网站,中地海外路桥建设有限公司网站,免费空间怎么搞网站ILSVRC 是一个比赛#xff0c;全称是ImageNet Large-Scale Visual Recognition Challenge#xff0c;平常说的ImageNet比赛指的是这个比赛。 使用的数据集是ImageNet数据集的一个子集#xff0c;一般说的ImageNet#xff08;数据集#xff09;实际上指的是ImageNet的这个子…ILSVRC 是一个比赛全称是ImageNet Large-Scale Visual Recognition Challenge平常说的ImageNet比赛指的是这个比赛。 使用的数据集是ImageNet数据集的一个子集一般说的ImageNet数据集实际上指的是ImageNet的这个子集总共有1000类每类大约有1000张图像。完整的 ImageNet有大约1.2million的训练集5万验证集15万测试集。ILSVRC从2010年开始举办到2017年是最后一届。ILSVRC-2012的数据集被用在2012-2014年的挑战赛中VGG论文中提到。ILSVRC-2010是唯一提供了test set的一年。 ImageNet可能是指整个数据集15 million也可能指比赛用的那个子集1000类大约每类1000张也可能指ILSVRC这个比赛。需要根据语境自行判断。 12-17年期间在ImageNet比赛上提出了一些经典网络比如AlexNetZFNetVGG GoogLeNet ResNetDenseNetSENet。我之前的博文都有相应模型及其变体的介绍。 13 年 ZFNet16 年 DenseNet SENET简介 提出背景卷积核通常被看做是在局部感受野上在空间上和通道维度上同时对信息进行相乘求和的计算。现有网络很多都是主要在空间维度方面来进行特征的融合如Inception的多尺度。 通道维度的注意力机制在常规的卷积操作中输入信息的每个通道进行计算后的结果会进行求和输出这时每个通道的重要程度是相同的。而通道维度的注意力机制则通过学习的方式来自动获取到每个特征通道的重要程度即feature map层的权重以增强有用的通 道特征抑制不重要的通道特征。 说起卷积对通道信息的处理有人或许会想到逐点卷积即kernel大小为1X1的常规卷积。与1X1卷积相比SENet是为每个channel重新分配一个权重即重要程度。而1X1卷积只是在做channel的融合计算顺带进行升维和降维也就是说每个channel在计算时的重要程度是相同的。 SENet 模块 X经过一系列传统卷积得到U对U先做一个Global Average Pooling输出的1x1xC数据即上图梯形短边的白色向量这个特征向量一定程度上可以代表之前的输入信息论文中称之为Squeeze操作。 再经过两个全连接来学习通道间的重要性用sigmoid限制到01的范围这时得到的输出可以看作每个通道重要程度的权重即上图梯形短边的彩色向量论文中称之为Excitation操作。 最后把这个1x1xC的权重乘到U的C个通道上这时就根据权重对U的channles进行了重要程度的重新分配。 效果 与SE模块可以嵌入到现在几乎所有的网络结构中而且都可以得到不错的效果提升用过的都说好。在大部分模型中嵌入SENet要比非SENet的准确率更高出1左右而计算复杂度上只是略微有提升具体如下图所示。而且SE块会使训练和收敛更容易。CPU推断时间的基准测试224×224的输入图 像ResNet-50 164ms SE-ResNet-50 167ms。 代码 class SqueezeExcite(nn.Module):def __init__(self,input_c: int, # block input channelexpand_c: int, # block expand channelse_ratio: float 0.25):super(SqueezeExcite, self).__init__()squeeze_c int(input_c * se_ratio)self.conv_reduce nn.Conv2d(expand_c, squeeze_c, 1)self.act1 nn.SiLU() # alias Swishself.conv_expand nn.Conv2d(squeeze_c, expand_c, 1)self.act2 nn.Sigmoid()def forward(self, x: Tensor):scale x.mean((2, 3), keepdimTrue)scale self.conv_reduce(scale)scale self.act1(scale)scale self.conv_expand(scale)scale self.act2(scale)return scale * x总结 SE block 可以理解为 channel维度上的注意力机制即重分配通道上 feature map对后续计算的权重与Stochastic Depth Net一样本论文的贡献更像一种思想而非模型。在之后的模型中会经常看见SE block 的身影。例如SKNetMobileNet等等。
http://www.zqtcl.cn/news/499740/

相关文章:

  • 加强网站建设的制度wordpress如何清空
  • 轻松筹 的网站价格做网站建设意识形态
  • 有.net源码如何做网站湖南宣传片制作公司
  • dede网站模板怎么安装教程青岛需要做网站的公司
  • 静态双语企业网站后台源码北京网站关键词优化
  • 石家庄手机网站建设公司wordpress侧边栏显示子分类文字数
  • 公司网站客户案例个人做 网站2019
  • 个人网站怎么申请销售策划
  • 网站被黑 禁止js跳转企业为什么要建立集团
  • 建设网站的各种问题上海品牌女装排行榜前十名
  • seo优化搜索引擎网站优化推广网络关键词优化-乐之家网络科技商城网站备案能通过吗
  • 江门网站建设推广策划网站改版的宣传词
  • 网站建设三大部分国外购物平台网页界面设计
  • 公司商城网站建设方案wordpress旗舰
  • 京东云服务器怎么做网站企业宣传网站怎么做
  • 如何自学网站建设云南网爱我国防知识竞赛
  • 什么网站可以做投资设计接单
  • 网站内容批量替换桐乡网站制作
  • 怎么免费做网站教程制作xml网站地图文件
  • 广西智能网站建设哪家好网红商城
  • 关于建设网站的情况说明书wordpress 在线检测
  • 帝国cms 网站迁移错版怎样做心理咨询网站
  • 烟台建网站wordpress重写规则
  • 上海网站建设怎么赚钱平顶山网站建设服务公司
  • 导航网站如何被百度收录广告设计在线设计
  • 雪域什么网站是做电影的苏州优化方式
  • 设计网站多少钱手机百度助手
  • 驾校网上约车网站开发不会做网站如何做seo
  • 企业做推广可以发哪些网站宜兴埠网站建设
  • 网站后台文章添加成功 不显示公司设计网站建设合同