2022年楼市最新消息,好的seo平台,如皋做网站公司,广告联盟app下载赚钱在Python中#xff0c;我们通常使用pandas库来处理和分析数据。数据填充是数据预处理的一个重要步骤#xff0c;用于处理数据中的缺失值。以下是使用pandas库进行数据填充的示例代码#xff1a;
在数据分析中#xff0c;处理缺失值#xff08;空值#xff09;是一个重要…在Python中我们通常使用pandas库来处理和分析数据。数据填充是数据预处理的一个重要步骤用于处理数据中的缺失值。以下是使用pandas库进行数据填充的示例代码
在数据分析中处理缺失值空值是一个重要的预处理步骤。缺失值的存在可能导致数据分析结果不准确或产生误导。因此需要采取适当的策略来填补这些缺失值。以下是几种常见的空值填补办法
1. 常数填充
将缺失值替换为某个常数例如0、中位数、均值或者一个特殊的标识值。这种方法的优点是简单快速但缺点是可能引入偏差因为填充的常数可能与实际数据分布不符。 python复制代码
df[column_name].fillna(value0, inplaceTrue)
2. 均值/中位数/众数填充
根据列的数据类型数值型或分类型使用列的均值、中位数或众数来填充缺失值。这种方法适用于数值型数据可以保持数据的分布特性。 python复制代码
df[column_name].fillna(valuedf[column_name].mean(), inplaceTrue)
3. 插值填充
对于时间序列数据可以使用插值方法如线性插值、多项式插值等来估计缺失值。这种方法能够考虑到数据随时间的变化趋势。 python复制代码
df[column_name].interpolate(methodlinear, inplaceTrue)
4. 基于模型预测填充
使用机器学习模型如回归模型、决策树、随机森林等来预测缺失值。这种方法更加复杂但可能更准确地估计缺失值尤其是当缺失值与其他变量存在复杂关系时。 python复制代码
from sklearn.impute import IterativeImputer imputer IterativeImputer(max_iter10, random_state0) df_filled imputer.fit_transform(df)
5. 热卡填充Hot Deck Imputation
从数据集中随机选择一个非缺失值来替换缺失值。这种方法可以保持数据的分布特性但可能引入随机性。
6. 多重插补Multiple Imputation
创建多个数据集每个数据集对缺失值进行不同的填充然后对这些数据集的分析结果进行合并以考虑由填充缺失值引起的不确定性。
7. 基于相似性的填充
对于分类数据可以根据其他相似样本的值来填充缺失值。例如可以使用K近邻算法来找到与缺失值样本最相似的样本并用这些样本的值来填充缺失值。
注意事项
在选择填充方法时应考虑数据的性质、缺失值的比例以及分析的目的。在填充缺失值后建议检查数据的分布和统计特性以确保填充没有引入不合理的偏差。有时缺失值可能包含有用的信息例如某些缺失值可能表示“不适用”或“未知”在这种情况下应谨慎处理避免不必要的填充。
首先确保你已经安装了pandas库。如果没有你可以使用pip来安装
bash复制代码
pip install pandas
数据例样
x1x2x3x4x5x6x7x8x9x10x11x12x13x14y122.0811.462441.5850001210012130022.6772840.1650000216010029.581.751441.250001228010021.671530111112011120.178.172641.9611140260159100.5852881120211117.426.52340.12500002601010058.674.4621183.0411602435611127.8311283000021765380055.757.082486.7511312100510133.51.752148114122538581141.425211851161247011120.671.251881.37511312140034.92521487.51161201001112.712842.415001232010148.086.0424400002026911129.584.52947.51121233011018.9292640.75112028859211201.251440.1250000214050022.425.66521142.585170212932581028.170.5852640.04000210050019.170.5851640.5851001216010141.171.3352240.1650000216810141.581.752440.2110021601019.52640.7900002803510132.751.521385.511312011122.50.1251440.12500002200710133.173.041882.0411112180180281030.6712284211102220201123.082.52841.08511111260218511270.75288113123121511020.4210.51148000012154330152.331.3751889.4610122001010123.0811.52982.1251111122902851142.831.2527413.875011123521130174.83191110.040120203520125264310012011139.5813.9152948.625116127011047.7582847.87511612012611047.423214413.8751121251917051123.17021340.0851002011122.581.51640.5400012120680126.751.12521481.2510002052991163.330.542840.5851131218010123.750.4151840.040120212870020.7521140.71112124911024.51.751840.1650000213210116.170.042840.0400002011029.521108200002256180052.83152845.5111402022011132.333.52440.50001223210121.084.1251380.0400021401010128.170.1251440.08500002216210101191.751842.3350001211270127.583.251185.0850121220127.831.5294211111243436116.52653.51110205011037.332.52380.21000022600142.54.9151943.16510125214431156.7512.252741.251141220011143.1752352.250001214110023.750.712940.250111224050118.522341.5112021203011040.833.52350.500001116010024.50.521181.51000228082511429.7921487.9611802011019.50.16521140.040001238010121.511.52340.510012100690131.252.835211001502176147027.251.58521381.8351112125837141148.7526.335111010012010030.421.3752980.04013020340129.421.252941.7500021015.04151.51181214481140.2521.5210920111102012011136.54.2521143.500002454510125.580.3352483.50001234010129.833.52840.1650000221610123.0802441011101010032.171.462941.08511160212020801125.173.521340.62511702070601035.173.7521100160202010018.58102240.4150000280430139.9252350.210000255010123.4212840.50001128010137.58028400000318411024.7513.66521181.50000228020047132355.16511912011134.175.252940.0850001229071122.170.58511100000210010127.751.292480.250001114010142.754.0852640.04000021081010128.6714.52240.1250000202870136.2552852.51160203681018.171011180.1650000234010121.251.52941.50000215091038.921.6652640.250000203910131.830.041740.0400002010017.339.52641.750110120110020.420.83521141.58511102011039.08428430000248010138.670.212440.0851001228011127.6713.752945.75100124875011127.750.58511340.25112022605011119011100140245200250.87521481.041001216058611127.672214811140214075451122.2592640.08500002010049.8313.5852488.510012011132.332.52841.250001228010138.2510.1251440.1250000216010147.336.528410001202290127.8341385.75112127510035.750.9152640.7511402015841133.580.2523540001142010134.080.081750.041111228020011020.7510.33521380.3351111280511133.17121440.751171234040721122.751121142.5117121008101148.758.528812.51190218116561140.585284511702030661120.670.83518420001124010038.751.52110000027610057.0819.52845.511702030011031.253.7521380.62511912181111220.792940.29011024202840058.331021144111402016031128.920.3752840.290000222014100464253010002100961112131241.0851181216021024.7512.52641.51112121205681020.830.5110210000226010124.5813.511100000218410026.52.711840.085000018010140.920.83521101000213020038.334.4152840.1250000216010119.580.5852110013023507700139.259.52746.511140224046081125.750.52841.461151231211046.0832842.3751181239641601119.67101480.8351001214010022.251.251113.250000228010118.833.5411100001218020164.0820214817.511912010011016.51.2521140.2501102108990068.671521090111402033771176.7522.29210912.751111201101015.922.87521140.0850000212010134.83422512.51001218410047.42821056.511602375511011123.17028400000318411145.171.52842.51001214010115.177210410000260010118.830.4151840.1650110220020152.56.52446.291115020112031119.170175000011500211180.16521170.2100002200411137.50.83521040.040000212060122.671.5851943.085116028011147.834.16521450.0850001252010134.082.5284100002460170033.081.6252240.5400012010143.080.3751840.375118123001631134.54.041358.51171219511142.75323511000202010118.250.1652240.250001128010123.082.52110.0850001210042090022.58.4611442.460000216411117.920.2052640.04000022807510118.4210.4151640.125100021203760027.671.527421000136810018.929.25184111412805011122.670.752341.58501112400100162.512.7518851000211210023.5921148.51151212011135.253.16521483.751001268010056.834.25111500012050053.330.16521100001162280141.174.04213871180232011142.175.04211812.75100129211141.171.251940.250000201960033.750.7524511131221210125.6712.521341.211167121402591124.336.6251245.51001110011123.3311.6251940.835100121603011130.672.521382.250001134010137.17428551001128010126.251.542940.1250000210010029.750.6652940.2500012300100231.835253001102200540117.2532440.0400012160410129.2514.792645.041151216811028.583.542350.51001217110134.58028400000318410123.420.5852880.085100021801012511.252842.511170220012091018.757.521142.7111502184267271117.0821140.3350140216090016.080.3352110011021601270132.922.52641.750121272010020.3310288111402501466101.7515300000216010133.171.0421286.510012164312861025.332.0852882.751001236020024.75321181.83511190205011130.8302941.2511020211120.755.0851540.29000021401850040.338.1251440.16501202184190129.421.252880.25012124001090140.920.51740.50001213010029.50.462440.54114025011154.420.51483.961000218031511345.51841.5000126010125122442.251121212060026.582.54111000012180610033.084.625211811202011133.672.1652841.50000312010136.172355000022106880119.50.292440.29000022803650124.170.87521144.6251121252020011030.56.528541171203066112072840.500002010125.330.582840.29117129651251129.584.75274201112460690143.172.252350.751000256010128.751.1652440.51000128010131.573135700002020120.259.9621020100020111458.5213814111128820011022.832.2921182.291171214023851020.67321140.1651130210071127.831.52942.250111210040140.922.251148101001217610156.422818428.51140020161064.080.1652110111022321011022.4211.2511480.751140203221024.332.51354.5000022004570069.56211000001010135.580.752441.50001223110148.3312274161000111011028.081511090100020132131135.172.52444.51170215012711149.57.5852357.585111512050011180.255.52840.541000203410129.25132280.50000222810016.920.52340.165016122403600160.16526410121232020160.0814.521118111512010011122481121218111141.51.542353.50000211124.0892640.2500012010124.513.335164000121204760134.751521275.3751191201351133.671.252941.1650000212010040.83101181.7510002298381120.421.8352842.25111021001511137.51.1251241.50001243111148.54.252740.12510012225111230.752740.5000113201013.3752888.2900012010116.332.752640.665011028022022.6721181.335100010011021.7511.752840.250001218010025.082.541640.251001237011136.332.1251940.085111025011881028.583.752840.2501112401550122.1712.1252843.335012121801740134.171.5421341.54111125205000111352.523410001221010128.583.6252640.250001210010019.175.4152380.2900002804850123.2512840.8351000130011116.50.1252840.1650000213210020.080.12521141011022407691122.33112942111028027911345.0851351.085001248010057.080.33523511001225221980116.250.8352740.0851000120010132.8321382.751160216020731148.2525.0852941.7511302151134.172.752352.5000122322010118.331.21110200000210010144.250.527410.751000140010138.921.752440.50001230030131.580.751643.50001232010125.081.7121441.66511112395211165.4211210920117122211141.3302851510002011131.251.12521100110296200036.754.7121100000216010132.337.521051.5851001142010031.923.1252113.040121220050124.832.752842.25116021846011121.920.5411440.0411112840601134.25321387.41510012011151.8331111.50000218050031.571.52110012122001060138.420.7052840.375012022255010139.171.7121440.1251151248011118.172.462870.96012121605880139521343.511101201112011.04528420001213610132.752.3352285.750001229210118.585.712240.540000212010015.837.62521140.1250111201610139.335.87521381011141239911019.580.6652941.6650000222060121.3310.5284310012011022.670.752842012122003950125.673.252882.2901112416220121.0810.08511081.2500002260100491.5253010012100280120.675.2921140.3751110216010019.670.2121180.29111102801001121.830.252280.66510012011126.830.5424100000210010038.585213413.51001298010050.0812.542642.291131215611015.750.375284100002120190024.512.752854.75112027344511214.791942.2511112803011122.081121340.6651000210011154.589.41521114.415111112303011118.085.52440.5100028011136.674.4151440.2511101232011138.1710.12521442.5116025201971121.831.542440.0850001235610051.926.52353.085000127310122.172.252340.12500002160110152.421.52243.750001203510060.92526441140201001120.175.6252941.711000112011123.2542850.251001216011136.170.421940.290001230930 以下是对应上述缺失值处理方法的Python代码示例
1. 常数填充 在这个修改后的代码中constant_for_continuous是填充连续变量缺失值的常数这里用0作为示例而constant_for_discrete是填充离散变量缺失值的常数这里用字符串未知作为示例。您可以根据需要更改这些常数的值。
import pandas as pd# 读取Excel文件
df pd.read_excel(银行贷款审批数据.xlsx)# 定义连续变量和离散变量列表
continuous_vars [x2, x3, x5, x6, x7, x10, x13, x14]
discrete_vars [x1, x4, x8, x9, x11, x12]# 使用常数填充连续变量的缺失值例如使用常数0
constant_for_continuous 0
for var in continuous_vars:df[var].fillna(constant_for_continuous, inplaceTrue)# 使用常数填充离散变量的缺失值例如使用字符串未知
constant_for_discrete 未知
for var in discrete_vars:df[var].fillna(constant_for_discrete, inplaceTrue)# 检查是否还有缺失值
missing_values df.isnull().sum().sum()
if missing_values 0:print(所有缺失值已填充。)
else:print(仍有缺失值未填充。)# 输出填充后的数据框的前几行
print(df.head())# 保存填充后的数据框到Excel文件
df.to_excel(填充后的银行贷款审批数据_常数填充.xlsx, indexFalse) 2. 均值/中位数/众数填充 import pandas as pd
from scipy import stats# 读取Excel文件
df pd.read_excel(银行贷款审批数据.xlsx)# 定义连续变量和离散变量列表
continuous_vars [x2, x3, x5, x6, x7, x10, x13, x14]
discrete_vars [x1, x4, x8, x9, x11, x12]# 使用均值填充连续变量的缺失值
for var in continuous_vars:df[var].fillna(df[var].mean(), inplaceTrue)# 或者使用中位数填充连续变量的缺失值
# for var in continuous_vars:
# df[var].fillna(df[var].median(), inplaceTrue)# 使用众数填充离散变量的缺失值
for var in discrete_vars:mode_value stats.mode(df[var].dropna())[0][0]df[var].fillna(mode_value, inplaceTrue)# 检查是否还有缺失值
missing_values df.isnull().sum().sum()
if missing_values 0:print(所有缺失值已填充。)
else:print(仍有缺失值未填充。)# 输出填充后的数据框的前几行
print(df.head())# 保存填充后的数据框到Excel文件
df.to_excel(填充后的银行贷款审批数据_均值众数填充.xlsx, indexFalse) 3. 插值填充
import pandas as pd# 读取Excel文件
df pd.read_excel(银行贷款审批数据.xlsx)# 定义连续变量和离散变量列表
continuous_vars [x2, x3, x5, x6, x7, x10, x13, x14]
discrete_vars [x1, x4, x8, x9, x11, x12]# 使用线性插值填充连续变量的缺失值
for var in continuous_vars:df[var].interpolate(methodlinear, inplaceTrue)# 对于离散变量插值通常不是合适的方法因为它们通常是分类数据。
# 因此我们仍然使用众数来填充离散变量的缺失值。
for var in discrete_vars:most_frequent_value df[var].mode()[0]df[var].fillna(most_frequent_value, inplaceTrue)# 检查是否还有缺失值
missing_values df.isnull().sum().sum()
if missing_values 0:print(所有缺失值已填充。)
else:print(仍有缺失值未填充。)# 输出填充后的数据框的前几行
print(df.head())# 保存填充后的数据框到Excel文件
df.to_excel(填充后的银行贷款审批数据_插值填充.xlsx, indexFalse) 4. 基于模型预测填充 python复制代码
from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer # 迭代式填充 imputer IterativeImputer(max_iter10, random_state0) df_filled imputer.fit_transform(df) df pd.DataFrame(df_filled, columnsdf.columns)
5. 热卡填充示例代码需要自定义逻辑 import pandas as pd
from sklearn.impute import KNNImputer# 读取Excel文件
df pd.read_excel(银行贷款审批数据.xlsx)# 假设 continuous_vars 是包含连续变量的列名的列表
continuous_vars [x2, x3, x5, x6, x7, x10, x13, x14]# 提取连续变量
df_continuous df[continuous_vars]# 使用KNNImputer填充缺失值
# 设定K值这里以2为例你可以根据数据集的特性调整这个值
knn_imputer KNNImputer(n_neighbors2)
df_continuous_filled knn_imputer.fit_transform(df_continuous)# 将填充后的数据转换回DataFrame格式
df_continuous_filled pd.DataFrame(df_continuous_filled, columnscontinuous_vars)# 将填充后的连续变量重新合并到原始DataFrame中
df[continuous_vars] df_continuous_filled# 检查是否还有缺失值
missing_values df[continuous_vars].isnull().sum().sum()
if missing_values 0:print(所有连续变量的缺失值已基于KNN填充。)
else:print(f仍有 {missing_values} 个连续变量的缺失值未填充。)# 保存填充后的数据框到Excel文件
df.to_excel(填充后的银行贷款审批数据_KNN填充.xlsx, indexFalse) 6. 多重插补使用fancyimpute库 import pandas as pd
from fancyimpute import IterativeImputer# 读取Excel文件
df pd.read_excel(银行贷款审批数据.xlsx)# 初始化IterativeImputer
# max_iter设置迭代次数可以设置较高的值以确保收敛
# min_value和max_value用于限制填充值的范围可根据实际数据调整
imputer IterativeImputer(max_iter10, random_state0, min_value0, max_value1) # 假设数据在0和1之间# 填充缺失值
df_filled imputer.fit_transform(df)# 将填充后的数组转换回DataFrame
df_filled pd.DataFrame(df_filled, columnsdf.columns)# 检查是否还有缺失值
missing_values df_filled.isnull().sum().sum()
if missing_values 0:print(所有缺失值已基于多重插补填充。)
else:print(f仍有 {missing_values} 个缺失值未填充。)# 保存填充后的数据框到Excel文件
df_filled.to_excel(填充后的银行贷款审批数据_多重插补.xlsx, indexFalse) 7. 基于相似性的填充使用K近邻 python复制代码
from sklearn.impute import KNNImputer # K近邻填充 imputer KNNImputer(n_neighbors2) df_filled imputer.fit_transform(df) df pd.DataFrame(df_filled, columnsdf.columns)
请注意以上代码示例中的df[column_name]应替换为实际的列名而df应替换为你的实际DataFrame。此外某些方法可能需要额外的库如scipy或fancyimpute你可能需要先使用pip来安装它们。
每种填充方法都有其适用场景和局限性选择哪种方法取决于数据的特性、缺失值的比例以及分析的目的。在实际应用中可能需要尝试多种方法并比较它们对分析结果的影响以选择最合适的方法。