网站建设 企业,深圳画册设计印刷公司,白名单企业,wordpress 手工网站前言 这是对上一篇WordEmbedding的续篇PositionEmbedding。
视频链接#xff1a;19、Transformer模型Encoder原理精讲及其PyTorch逐行实现_哔哩哔哩_bilibili
上一篇链接#xff1a;Transformer模型#xff1a;WordEmbedding实现-CSDN博客 正文 先回顾一下原论文中对Posit…前言 这是对上一篇WordEmbedding的续篇PositionEmbedding。
视频链接19、Transformer模型Encoder原理精讲及其PyTorch逐行实现_哔哩哔哩_bilibili
上一篇链接Transformer模型WordEmbedding实现-CSDN博客 正文 先回顾一下原论文中对Position Embedding的计算公式pos表示位置i表示维度索引d_model表示嵌入向量的维度position分奇数列和偶数列。 Position Embedding也是二维的行数是训练的序列最大长度列是d_model。首先定义position的最大长度这里定为12也就是训练中的长度最大值都是12。
max_position_len 12 这里先循环遍历得到pos构造Pos序列pos是从0到最大长度的遍历决定行
pos_mat torch.arange(max_position_len) 但是此时得到的是一维的我们要将它转为二维矩阵的也就是得到目标行数使用.reshape()函数这样就构造好了行矩阵
pos_mat torch.arange(max_position_len).reshape((-1,1)) tensor([[ 0], [ 1], [ 2], [ 3], [ 4], [ 5], [ 6], [ 7], [ 8], [ 9], [10], [11]]) 接下来要构造列矩阵构造 i 序列首先是是2i/d_model部分这里的8是因为我们设定的d_model82是步长
i_mat torch.arange(0, 8, 2)/model_dim 这时候再把分母的完整形式实现幂次使用pow()函数
i_mat torch.pow(10000, torch.arange(0, 8, 2)/model_dim) tensor([ 1., 10., 100., 1000.]) 此时就得到了列向量这时候就有疑问了为什么列只有4列我们的d_model不是8吗应该有8列才对啊。这是因为区分了奇数列跟偶数列的计算所以这里才要求步长为2生成的只有4列。 先初始化一个max_position_len*model_dim的零矩阵12*8然后再分别使用sin和cos填充偶数列和奇数列
pe_embedding_table torch.zeros(max_position_len, model_dim)pe_embedding_table[:, 0::2] torch.sin(pos_mat/i_mat) # 从第0列到结束步长为2也就是填充偶数列
pe_embedding_table[:, 1::2] torch.cos(pos_mat/i_mat) # 从第1列到结束步长为2也就是填充奇数列 得到的就是Position Embedding的权重矩阵了 这下面采用的是使用nn.Embedding()的方法得到的跟上面的结果还是一样的只不过这里的pe_embedding是可以传入位置的之后的调用就是这样得到的
pe_embedding nn.Embedding(max_position_len, model_dim)
pe_embedding.weight nn.Parameter(pe_embedding_table,requires_gradFalse) 这里就要构造位置索引了
src_pos torch.cat([torch.unsqueeze(torch.arange(max_position_len),0) for _ in src_len]).to(torch.int32)
tgt_pos torch.cat([torch.unsqueeze(torch.arange(max_position_len),0) for _ in tgt_len]).to(torch.int32) 然后传入位置索引就得到了src跟tgt的Position Embedding
src_pe_embedding pe_embedding(src_pos)
tgt_pe_embedding pe_embedding(tgt_pos) 这里我很疑惑的点是生成的结果src_pe_embedding跟tgt_pe_embedding内容是一样的并且单个里面的一个内容也就是position embedding刚入门听得我还是有点不太能理解。 src_pos is tensor([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]], dtypetorch.int32) tgt_pos is tensor([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]], dtypetorch.int32) src_pe_embedding is: tensor([[[ 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00], [ 8.4147e-01, 5.4030e-01, 9.9833e-02, 9.9500e-01, 9.9998e-03, 9.9995e-01, 1.0000e-03, 1.0000e00], [ 9.0930e-01, -4.1615e-01, 1.9867e-01, 9.8007e-01, 1.9999e-02, 9.9980e-01, 2.0000e-03, 1.0000e00], [ 1.4112e-01, -9.8999e-01, 2.9552e-01, 9.5534e-01, 2.9995e-02, 9.9955e-01, 3.0000e-03, 1.0000e00], [-7.5680e-01, -6.5364e-01, 3.8942e-01, 9.2106e-01, 3.9989e-02, 9.9920e-01, 4.0000e-03, 9.9999e-01], [-9.5892e-01, 2.8366e-01, 4.7943e-01, 8.7758e-01, 4.9979e-02, 9.9875e-01, 5.0000e-03, 9.9999e-01], [-2.7942e-01, 9.6017e-01, 5.6464e-01, 8.2534e-01, 5.9964e-02, 9.9820e-01, 6.0000e-03, 9.9998e-01], [ 6.5699e-01, 7.5390e-01, 6.4422e-01, 7.6484e-01, 6.9943e-02, 9.9755e-01, 6.9999e-03, 9.9998e-01], [ 9.8936e-01, -1.4550e-01, 7.1736e-01, 6.9671e-01, 7.9915e-02, 9.9680e-01, 7.9999e-03, 9.9997e-01], [ 4.1212e-01, -9.1113e-01, 7.8333e-01, 6.2161e-01, 8.9879e-02, 9.9595e-01, 8.9999e-03, 9.9996e-01], [-5.4402e-01, -8.3907e-01, 8.4147e-01, 5.4030e-01, 9.9833e-02, 9.9500e-01, 9.9998e-03, 9.9995e-01], [-9.9999e-01, 4.4257e-03, 8.9121e-01, 4.5360e-01, 1.0978e-01, 9.9396e-01, 1.1000e-02, 9.9994e-01]], [[ 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00], [ 8.4147e-01, 5.4030e-01, 9.9833e-02, 9.9500e-01, 9.9998e-03, 9.9995e-01, 1.0000e-03, 1.0000e00], [ 9.0930e-01, -4.1615e-01, 1.9867e-01, 9.8007e-01, 1.9999e-02, 9.9980e-01, 2.0000e-03, 1.0000e00], [ 1.4112e-01, -9.8999e-01, 2.9552e-01, 9.5534e-01, 2.9995e-02, 9.9955e-01, 3.0000e-03, 1.0000e00], [-7.5680e-01, -6.5364e-01, 3.8942e-01, 9.2106e-01, 3.9989e-02, 9.9920e-01, 4.0000e-03, 9.9999e-01], [-9.5892e-01, 2.8366e-01, 4.7943e-01, 8.7758e-01, 4.9979e-02, 9.9875e-01, 5.0000e-03, 9.9999e-01], [-2.7942e-01, 9.6017e-01, 5.6464e-01, 8.2534e-01, 5.9964e-02, 9.9820e-01, 6.0000e-03, 9.9998e-01], [ 6.5699e-01, 7.5390e-01, 6.4422e-01, 7.6484e-01, 6.9943e-02, 9.9755e-01, 6.9999e-03, 9.9998e-01], [ 9.8936e-01, -1.4550e-01, 7.1736e-01, 6.9671e-01, 7.9915e-02, 9.9680e-01, 7.9999e-03, 9.9997e-01], [ 4.1212e-01, -9.1113e-01, 7.8333e-01, 6.2161e-01, 8.9879e-02, 9.9595e-01, 8.9999e-03, 9.9996e-01], [-5.4402e-01, -8.3907e-01, 8.4147e-01, 5.4030e-01, 9.9833e-02, 9.9500e-01, 9.9998e-03, 9.9995e-01], [-9.9999e-01, 4.4257e-03, 8.9121e-01, 4.5360e-01, 1.0978e-01, 9.9396e-01, 1.1000e-02, 9.9994e-01]]]) tgt_pe_embedding is: tensor([[[ 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00], [ 8.4147e-01, 5.4030e-01, 9.9833e-02, 9.9500e-01, 9.9998e-03, 9.9995e-01, 1.0000e-03, 1.0000e00], [ 9.0930e-01, -4.1615e-01, 1.9867e-01, 9.8007e-01, 1.9999e-02, 9.9980e-01, 2.0000e-03, 1.0000e00], [ 1.4112e-01, -9.8999e-01, 2.9552e-01, 9.5534e-01, 2.9995e-02, 9.9955e-01, 3.0000e-03, 1.0000e00], [-7.5680e-01, -6.5364e-01, 3.8942e-01, 9.2106e-01, 3.9989e-02, 9.9920e-01, 4.0000e-03, 9.9999e-01], [-9.5892e-01, 2.8366e-01, 4.7943e-01, 8.7758e-01, 4.9979e-02, 9.9875e-01, 5.0000e-03, 9.9999e-01], [-2.7942e-01, 9.6017e-01, 5.6464e-01, 8.2534e-01, 5.9964e-02, 9.9820e-01, 6.0000e-03, 9.9998e-01], [ 6.5699e-01, 7.5390e-01, 6.4422e-01, 7.6484e-01, 6.9943e-02, 9.9755e-01, 6.9999e-03, 9.9998e-01], [ 9.8936e-01, -1.4550e-01, 7.1736e-01, 6.9671e-01, 7.9915e-02, 9.9680e-01, 7.9999e-03, 9.9997e-01], [ 4.1212e-01, -9.1113e-01, 7.8333e-01, 6.2161e-01, 8.9879e-02, 9.9595e-01, 8.9999e-03, 9.9996e-01], [-5.4402e-01, -8.3907e-01, 8.4147e-01, 5.4030e-01, 9.9833e-02, 9.9500e-01, 9.9998e-03, 9.9995e-01], [-9.9999e-01, 4.4257e-03, 8.9121e-01, 4.5360e-01, 1.0978e-01, 9.9396e-01, 1.1000e-02, 9.9994e-01]], [[ 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00, 0.0000e00, 1.0000e00], [ 8.4147e-01, 5.4030e-01, 9.9833e-02, 9.9500e-01, 9.9998e-03, 9.9995e-01, 1.0000e-03, 1.0000e00], [ 9.0930e-01, -4.1615e-01, 1.9867e-01, 9.8007e-01, 1.9999e-02, 9.9980e-01, 2.0000e-03, 1.0000e00], [ 1.4112e-01, -9.8999e-01, 2.9552e-01, 9.5534e-01, 2.9995e-02, 9.9955e-01, 3.0000e-03, 1.0000e00], [-7.5680e-01, -6.5364e-01, 3.8942e-01, 9.2106e-01, 3.9989e-02, 9.9920e-01, 4.0000e-03, 9.9999e-01], [-9.5892e-01, 2.8366e-01, 4.7943e-01, 8.7758e-01, 4.9979e-02, 9.9875e-01, 5.0000e-03, 9.9999e-01], [-2.7942e-01, 9.6017e-01, 5.6464e-01, 8.2534e-01, 5.9964e-02, 9.9820e-01, 6.0000e-03, 9.9998e-01], [ 6.5699e-01, 7.5390e-01, 6.4422e-01, 7.6484e-01, 6.9943e-02, 9.9755e-01, 6.9999e-03, 9.9998e-01], [ 9.8936e-01, -1.4550e-01, 7.1736e-01, 6.9671e-01, 7.9915e-02, 9.9680e-01, 7.9999e-03, 9.9997e-01], [ 4.1212e-01, -9.1113e-01, 7.8333e-01, 6.2161e-01, 8.9879e-02, 9.9595e-01, 8.9999e-03, 9.9996e-01], [-5.4402e-01, -8.3907e-01, 8.4147e-01, 5.4030e-01, 9.9833e-02, 9.9500e-01, 9.9998e-03, 9.9995e-01], [-9.9999e-01, 4.4257e-03, 8.9121e-01, 4.5360e-01, 1.0978e-01, 9.9396e-01, 1.1000e-02, 9.9994e-01]]]) 代码
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F# 句子数
batch_size 2# 单词表大小
max_num_src_words 10
max_num_tgt_words 10# 序列的最大长度
max_src_seg_len 12
max_tgt_seg_len 12
max_position_len 12# 模型的维度
model_dim 8# 生成固定长度的序列
src_len torch.Tensor([11, 9]).to(torch.int32)
tgt_len torch.Tensor([10, 11]).to(torch.int32)
print(src_len)
print(tgt_len)#单词索引构成的句子
src_seq torch.cat([torch.unsqueeze(F.pad(torch.randint(1, max_num_src_words, (L,)),(0, max_src_seg_len-L)), 0) for L in src_len])
tgt_seq torch.cat([torch.unsqueeze(F.pad(torch.randint(1, max_num_tgt_words, (L,)),(0, max_tgt_seg_len-L)), 0) for L in tgt_len])
print(src_seq)
print(tgt_seq)# 构造Word Embedding
src_embedding_table nn.Embedding(max_num_src_words1, model_dim)
tgt_embedding_table nn.Embedding(max_num_tgt_words1, model_dim)
src_embedding src_embedding_table(src_seq)
tgt_embedding tgt_embedding_table(tgt_seq)
print(src_embedding_table.weight)
print(src_embedding)
print(tgt_embedding)# 构造Pos序列跟i序列
pos_mat torch.arange(max_position_len).reshape((-1, 1))
i_mat torch.pow(10000, torch.arange(0, 8, 2)/model_dim)# 构造Position Embedding
pe_embedding_table torch.zeros(max_position_len, model_dim)
pe_embedding_table[:, 0::2] torch.sin(pos_mat/i_mat)
pe_embedding_table[:, 1::2] torch.cos(pos_mat/i_mat)
print(pe_embedding_table is:\n,pe_embedding_table)pe_embedding nn.Embedding(max_position_len, model_dim)
pe_embedding.weight nn.Parameter(pe_embedding_table,requires_gradFalse)
print(pe_embedding.weight)# 构建位置索引
src_pos torch.cat([torch.unsqueeze(torch.arange(max_position_len),0) for _ in src_len]).to(torch.int32)
tgt_pos torch.cat([torch.unsqueeze(torch.arange(max_position_len),0) for _ in tgt_len]).to(torch.int32)
print(src_pos is:\n,src_pos)
print(tgt_pos is:\n,tgt_pos)src_pe_embedding pe_embedding(src_pos)
tgt_pe_embedding pe_embedding(tgt_pos)
print(src_pe_embedding is:\n,src_pe_embedding)
print(tgt_pe_embedding is:\n,tgt_pe_embedding)
参考
Python的reshape的用法reshape(1,-1)-CSDN博客