阿里服务器怎么做网站服务器吗,wordpress网站集群,erp是什么系统软件,建网站浩森宇特多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现BiTCN-Multihea…多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测。 模型描述 MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测用于处理时间序列数据适用平台Matlab 2023及以上 1.data为数据集格式为excel4个输入特征1个输出特征考虑历史特征的影响多变量时间序列预测 2.主程序文件运行即可 3.命令窗口输出R2、MAE、MAPE、MSE和MBE可在下载区获取数据和程序内容 注意程序和数据放在一个文件夹运行环境为Matlab2023b及以上。 BiTCN 引入了双向时间卷积结合了时间序列数据在过去和未来的信息使模型能够更好地捕获时间序列中的时序模式。传统的单向卷积只关注局部上下文信息而双向卷积可以从多个方向捕捉时间序列的重要特征。多头自注意力机制使得模型能够更灵活地对不同时间步的输入信息进行加权。这有助于模型更加集中地关注对预测目标有更大影响的时间点。自注意力机制还有助于处理时间序列中长期依赖关系提高了模型在预测时对输入序列的全局信息的感知。 程序设计
完整程序和数据获取方式1同等价值程序兑换完整程序和数据获取方式2私信博主回复** MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测**获取。 %---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim 1; % 最后一列为输出
num_size 0.7; % 训练集占数据集比例
num_train_s round(num_size * num_samples); % 训练集样本个数
f_ size(res, 2) - outdim; % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 划分训练集和测试集
P_train res(1: num_train_s, 1: f_);
T_train res(1: num_train_s, f_ 1: end);
M size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test res(num_train_s 1: end, 1: f_);
T_test res(num_train_s 1: end, f_ 1: end);
N size(P_test, 2);
————————————————
版权声明本文为CSDN博主「机器学习之心」的原创文章遵循CC 4.0 BY-SA版权协议转载请附上原文出处链接及本声明。
原文链接https://blog.csdn.net/kjm13182345320/article/details/130471154
参考资料 [1] http://t.csdn.cn/pCWSp [2] https://download.csdn.net/download/kjm13182345320/87568090?spm1001.2014.3001.5501 [3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm1001.2014.3001.5501