当前位置: 首页 > news >正文

无锡网站制作哪家好购物网站为什么做移动端

无锡网站制作哪家好,购物网站为什么做移动端,网站ip查询站长工具,中国软件是外包吗本文全面探讨了ROC曲线#xff08;Receiver Operating Characteristic Curve#xff09;的重要性和应用#xff0c;从其历史背景、数学基础到Python实现以及关键评价指标。文章旨在提供一个深刻而全面的视角#xff0c;以帮助您更好地理解和应用ROC曲线在模型评估中的作用。… 本文全面探讨了ROC曲线Receiver Operating Characteristic Curve的重要性和应用从其历史背景、数学基础到Python实现以及关键评价指标。文章旨在提供一个深刻而全面的视角以帮助您更好地理解和应用ROC曲线在模型评估中的作用。 一、引言 机器学习和数据科学在解决复杂问题时经常需要评估模型的性能。其中ROCReceiver Operating Characteristic曲线是一种非常有用的工具被广泛应用于分类问题中。该工具不仅在医学检测、信号处理中有着悠久的历史而且在近年来的机器学习应用中也显得尤为关键。 ROC曲线简介 ROC曲线用于展示在不同的分类阈值下模型的真正类率True Positive Rate, TPR和假正类率False Positive Rate, FPR之间的关系。通常与ROC曲线一起使用的还有AUCArea Under the Curve值用以量化ROC曲线下的面积进而给出一个关于模型性能的单一指标。 二、ROC曲线的历史背景 了解ROC曲线的历史背景不仅能增加我们对这一工具的尊重还能更好地理解它在多个领域内的应用价值。因此本节将探讨ROC曲线从最早的军事应用到现代医学和机器学习领域的发展过程。 二战雷达信号检测 ROC曲线最初的应用场景是二战中的雷达信号检测。当时盟军需要一种方法来评估雷达系统的性能——特别是系统在检测敌方飞机时的灵敏度和误报率。这就催生了ROC曲线的诞生它用于度量在不同阈值下雷达正确检测到目标True Positive和误报False Positive的情况。 在医学和机器学习中的应用 随着时间的推移ROC曲线的应用场景逐渐扩大。在20世纪50年代和60年代该曲线开始在心理测量学和医学诊断中得到应用。比如在癌症筛查中ROC曲线用于评估在不同诊断阈值下筛查测试对正例和负例的分类能力。 进入21世纪随着机器学习和数据科学的崛起ROC曲线在这些领域内也获得了广泛应用。它成为了评估分类模型如支持向量机、随机森林和神经网络等性能的标准方法之一。 横跨多个领域的普及 值得注意的是ROC曲线如今已经不仅局限于专业的科研和工程领域。许多业界工具和库如Scikit-learn、TensorFlow和PyTorch等都内置了绘制ROC曲线的功能使得即使是不具备专门训练的个人和小团队也能轻易地应用这一工具。 三、数学基础 在深入研究ROC曲线的实际应用之前我们首先需要理解其背后的数学基础。ROC曲线是建立在一系列重要的统计量之上的包括True Positive RateTPR和False Positive RateFPR。本节将详细介绍这些概念和计算方法并提供相关Python代码示例。 True Positive RateTPR与False Positive RateFPR True Positive RateTPR TPR也称为灵敏度Sensitivity或召回率Recall是真正例True PositiveTP占所有实际正例实际正例 TP FN的比例。 False Positive RateFPR FPR也称为1-特异性1-Specificity是假正例False PositiveFP占所有实际负例实际负例 FP TN的比例。 计算方法 计算TPR和FPR通常涉及到以下几个步骤 设置一个分类阈值。 使用分类模型对数据进行预测。 根据阈值将预测结果划分为正例或负例。 计算TP, FP, TN, FN的数量。 使用上面的公式计算TPR和FPR。 代码示例计算TPR和FPR 下面是一个用Python和PyTorch来计算TPR和FPR的简单代码示例。 import torch# 真实标签和模型预测概率 y_true torch.tensor([0, 1, 1, 0, 1]) y_pred torch.tensor([0.2, 0.8, 0.6, 0.1, 0.9])# 设置阈值 threshold 0.5# 根据阈值进行分类 y_pred_class (y_pred threshold).float()# 计算TP, FP, TN, FN TP torch.sum((y_true 1) (y_pred_class 1)).float() FP torch.sum((y_true 0) (y_pred_class 1)).float() TN torch.sum((y_true 0) (y_pred_class 0)).float() FN torch.sum((y_true 1) (y_pred_class 0)).float()# 计算TPR和FPR TPR TP / (TP FN) FPR FP / (FP TN)print(fTPR {TPR}, FPR {FPR}) 输出 TPR 0.6667, FPR 0.0 四、Python绘制ROC曲线 理论基础明确之后我们将转向如何用Python实现ROC曲线的绘制。这里我们会使用Python的数据科学库matplotlib和深度学习框架PyTorch进行展示。为了简化问题我们将使用一个简单的二分类问题作为例子。 导入所需库 首先让我们导入所有必要的库。 import matplotlib.pyplot as plt import torch from sklearn.metrics import roc_curve, auc 准备数据 为了本教程的目的我们假设已经有了模型预测的概率值和相应的真实标签。 # 真实标签 y_true torch.tensor([0, 1, 1, 0, 1, 0, 1])# 模型预测的概率值 y_score torch.tensor([0.1, 0.9, 0.8, 0.2, 0.7, 0.05, 0.95]) 计算ROC曲线坐标点 利用sklearn.metrics库的roc_curve函数可以方便地计算出ROC曲线的各个点。 fpr, tpr, thresholds roc_curve(y_true, y_score) 计算AUC值 AUCArea Under Curve是ROC曲线下方的面积通常用于量化模型的整体性能。 roc_auc auc(fpr, tpr) 绘制ROC曲线 使用matplotlib进行绘图。 plt.figure() lw 2 # 线宽 plt.plot(fpr, tpr, colordarkorange, lwlw, labelfROC curve (area {roc_auc:.2f})) plt.plot([0, 1], [0, 1], colornavy, lwlw, linestyle--) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel(False Positive Rate) plt.ylabel(True Positive Rate) plt.title(Receiver Operating Characteristic Example) plt.legend(loclower right) plt.show() 这段代码会生成一个标准的ROC曲线其中橙色的线表示ROC曲线虚线表示随机分类器的性能。 完整代码示例 以下是前面所有代码段的合并形成一个完整的例子。 import matplotlib.pyplot as plt import torch from sklearn.metrics import roc_curve, auc# 真实标签和模型预测的概率 y_true torch.tensor([0, 1, 1, 0, 1, 0, 1]) y_score torch.tensor([0.1, 0.9, 0.8, 0.2, 0.7, 0.05, 0.95])# 计算ROC曲线的各个点 fpr, tpr, thresholds roc_curve(y_true, y_score)# 计算AUC值 roc_auc auc(fpr, tpr)# 绘制ROC曲线 plt.figure() lw 2 plt.plot(fpr, tpr, colordarkorange, lwlw, labelfROC curve (area {roc_auc:.2f})) plt.plot([0, 1], [0, 1], colornavy, lwlw, linestyle--) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel(False Positive Rate) plt.ylabel(True Positive Rate) plt.title(Receiver Operating Characteristic Example) plt.legend(loclower right) plt.show() 五、ROC曲线的评价指标 在深入了解如何绘制ROC曲线后接下来我们将专注于如何使用ROC曲线来评价模型的性能。ROC曲线本身提供了一个直观的方式来观察模型在不同阈值下的性能但除此之外还有其他一些重要的评价指标。 AUCArea Under Curve AUC是ROC曲线下的面积范围在0到1之间。AUC值可以用于总体评价模型的分类性能。 AUC 1表示模型有完美的分类性能。 0.5 AUC 1表示模型具有一定的分类能力。 AUC 0.5表示模型没有分类能力相当于随机猜测。 AUC的计算通常使用数值积分方法如梯形法则。 Youdens Index F1 Score 虽然F1 Score不是直接从ROC曲线中获得的但它是一个与阈值相关的评价指标。它是精确率和召回率的调和平均。 代码示例计算AUC和Youdens Index 以下Python代码段使用sklearn.metrics库来计算AUC并手动计算Youdens Index。 from sklearn.metrics import roc_curve, auc# 计算ROC曲线 fpr, tpr, thresholds roc_curve(y_true, y_score)# 计算AUC roc_auc auc(fpr, tpr) print(fAUC: {roc_auc})# 计算Youdens Index youdens_index tpr - fpr best_threshold thresholds[torch.argmax(torch.tensor(youdens_index))] print(fBest threshold according to Youdens Index: {best_threshold}) 输出 AUC: 0.94 Best threshold according to Youdens Index: 0.7 六、总结 本文全面而深入地探讨了ROC曲线的各个方面从其历史背景和数学基础到具体的Python实现以及相关的评价指标。通过这一流程我们不仅能更加深刻地理解ROC曲线作为一个模型评估工具的价值而且还可以洞察到其在现代机器学习和数据科学中的应用广度和深度。 技术洞见 虽然ROC曲线和AUC通常被视为分类模型性能的金标准但值得注意的是它们并不总是适用于所有场景。例如在高度不平衡的数据集中ROC曲线可能会给出过于乐观的性能评估。这是因为ROC曲线对假正例和假负例的处理是平等的而在不平衡数据集中这种平等处理可能会掩盖模型在较少类别上的性能不足。 另外虽然ROC曲线能够很好地评价模型的整体性能但它并不能提供关于模型在不同类别或群体间公平性的信息。在一些应用场景中如医疗诊断和金融风险评估模型的公平性是一个重要的考量因素。 展望未来 随着机器学习和人工智能技术的不断发展评估模型性能的方法也在逐渐演化。在深度学习、自然语言处理和强化学习等领域研究人员正在开发出更为复杂和精细的评价机制。因此理解和掌握ROC曲线只是起点未来还有更多富有挑战性和创新性的工作等待我们去探索。 通过本文我们希望能够提供一个全面而深入的视角以助您在复杂的模型评估问题中做出更加明智和准确的决策。正如数据科学中常说的了解并正确使用各种评价指标就是走向建模成功的关键第一步。 文章转载自techlead_krischang 原文链接https://www.cnblogs.com/xfuture/p/17874545.html
http://www.zqtcl.cn/news/220352/

相关文章:

  • 如何直接用jsp做网站不写servletwordpress模板 单栏
  • 长沙网站建设哪个公司好设计公司网站 唐山
  • 原创小说手机网站制作需要多少钱郴州seo外包
  • 深圳市大鹏建设局网站网站关键词没排名怎么办
  • 水果商城网站制作多少钱c#如何做公司网站
  • 国内做进口的电商网站网站建设的经验做法
  • 蚂蚁搬家公司官方网站免费网站软件制作
  • 搭建网站要用到的工具外链代发免费
  • 肥城网站建设流程oem中国代加工网
  • 到底建手机网站还是电脑网站网站视频怎么做
  • 小区网站建设前端手机网站
  • 做一个网站价格WordPress好看的404
  • 查看注册过的网站在线网站软件免费下载
  • 门户网站建设公司价位域名出售网站
  • 亿级流量网站架构自己制作一个网站
  • 企业网站seo成功案例天津网站建设制作品牌公司
  • 衡水做网站电话郏县建设局网站
  • 美工做网站尺寸多少钱怎么做网站免费的
  • 会计信息系统网站建设流程图手机网站图片宽度
  • 已备案网站增加域名wordpress 百度熊掌号
  • 网站建设维护课件ppt百度搜索一下百度
  • 重庆企业网站开发方案wordpress菜单插件
  • 江苏网站seo设计什么学习网站建设
  • 青海网站建设系统电商出口营销要多少钱
  • 上海的网站设计公司百度上做优化
  • 连云港权威网站优化服务如何自己做解析网站
  • 学校网站建设调研报告wordpress update_post_meta
  • 法人变更在哪个网站做公示做企业平台的网站有哪些
  • 制作网站过程有免费的网站域名吗
  • 简单做网站用什么软件价格优惠