当前位置: 首页 > news >正文

微信网站开发 js框架学校建网站

微信网站开发 js框架,学校建网站,网页设计公司十强,深圳有哪些网站开发公司大型语言模型(llm)的出现刺激了多个领域的创新。但是在思维链(CoT)提示和情境学习(ICL)等策略的驱动下#xff0c;提示的复杂性不断增加#xff0c;这给计算带来了挑战。这些冗长的提示需要大量的资源来进行推理#xff0c;因此需要高效的解决方案#xff0c;本文将介绍LLM…大型语言模型(llm)的出现刺激了多个领域的创新。但是在思维链(CoT)提示和情境学习(ICL)等策略的驱动下提示的复杂性不断增加这给计算带来了挑战。这些冗长的提示需要大量的资源来进行推理因此需要高效的解决方案本文将介绍LLMLingua与专有的LlamaIndex的进行集成执行高效推理。 LLMLingua是微软的研究人员发布在EMNLP 2023的一篇论文LongLLMLingua是一种通过快速压缩增强llm在长上下文场景中感知关键信息的能力的方法。 LLMLingua与llamindex的协同工作 LLMLingua作为解决LLM应用程序中冗长提示的开创性解决方案而出现。该方法侧重于压缩冗长提示同时保证语义完整性和提高推理速度。它结合了各种压缩策略提供了一种微妙的方法来平衡提示长度和计算效率。 以下是LLMLingua与LlamaIndex集成的优势: LLMLingua与LlamaIndex的集成标志着llm在快速优化方面迈出了重要的一步。LlamaIndex是一个包含为各种LLM应用程序量身定制的预优化提示的专门的存储库通过这种集成LLMLingua可以访问丰富的特定于领域的、经过微调的提示从而增强其提示压缩能力。 LLMLingua的提示压缩技术和LlamaIndex的优化提示库之间的协同作用提高了LLM应用程序的效率。利用LLAMA的专门提示LLMLingua可以微调其压缩策略确保保留特定于领域的上下文同时减少提示长度。这种协作极大地加快了推理速度同时保留了关键领域的细微差别。 LLMLingua与LlamaIndex的集成扩展了其对大规模LLM应用程序的影响。通过利用LLAMA的专业提示LLMLingua优化了其压缩技术减轻了处理冗长提示的计算负担。这种集成不仅加速了推理而且确保了关键领域特定信息的保留。 LLMLingua与LlamaIndex的工作流程 使用LlamaIndex实现LLMLingua涉及到一个结构化的过程该过程利用专门的提示库来实现高效的提示压缩和增强的推理速度。 框架集成 首先需要在LLMLingua和LlamaIndex之间建立连接。这包括访问权限、API配置和建立连接以便及时检索。 预先优化提示的检索 LlamaIndex充当专门的存储库包含为各种LLM应用程序量身定制的预优化提示。LLMLingua访问这个存储库检索特定于域的提示并利用它们进行提示压缩。 提示压缩技术 LLMLingua使用它的提示压缩方法来简化检索到的提示。这些技术专注于压缩冗长的提示同时确保语义一致性从而在不影响上下文或相关性的情况下提高推理速度。 微调压缩策略 LLMLingua基于从LlamaIndex获得的专门提示来微调其压缩策略。这种细化过程确保保留特定于领域的细微差别同时有效地减少提示长度。 执行与推理 一旦使用LLMLingua的定制策略与LlamaIndex的预优化提示进行压缩压缩后的提示就可以用于LLM推理任务。此阶段涉及在LLM框架内执行压缩提示以实现高效的上下文感知推理。 迭代改进和增强 代码实现不断地经历迭代的细化。这个过程包括改进压缩算法优化从LlamaIndex中检索提示微调集成确保压缩后的提示和LLM推理的一致性和增强的性能。 测试和验证 如果需要还可以进行测试和验证这样可以评估LLMLingua与LlamaIndex集成的效率和有效性。评估性能指标以确保压缩提示保持语义完整性并在不影响准确性的情况下提高推理速度。 代码实现 下面我们将开始深入研究LLMLingua与LlamaIndex的代码实现 安装程序包 # Install dependency.!pip install llmlingua llama-index openai tiktoken -q # Using the OAIimport openaiopenai.api_key insert_openai_key获取数据 !wget https://www.dropbox.com/s/f6bmb19xdg0xedm/paul_graham_essay.txt?dl1 -O paul_graham_essay.txt加载模型 from llama_index import (VectorStoreIndex,SimpleDirectoryReader,load_index_from_storage,StorageContext,)# load documentsdocuments SimpleDirectoryReader(input_files[paul_graham_essay.txt]).load_data()向量存储 index VectorStoreIndex.from_documents(documents)retriever index.as_retriever(similarity_top_k10)question Where did the author go for art school?# Ground-truth Answeranswer RISDcontexts retriever.retrieve(question)contexts retriever.retrieve(question)context_list [n.get_content() for n in contexts]len(context_list)#Output #10原始提示和返回 # The response from original promptfrom llama_index.llms import OpenAIllm OpenAI(modelgpt-3.5-turbo-16k)prompt \n\n.join(context_list [question])response llm.complete(prompt)print(str(response))#OutputThe author went to the Rhode Island School of Design (RISD) for art school.设置 LLMLingua from llama_index.query_engine import RetrieverQueryEnginefrom llama_index.response_synthesizers import CompactAndRefinefrom llama_index.indices.postprocessor import LongLLMLinguaPostprocessornode_postprocessor LongLLMLinguaPostprocessor(instruction_strGiven the context, please answer the final question,target_token300,rank_methodlongllmlingua,additional_compress_kwargs{condition_compare: True,condition_in_question: after,context_budget: 100,reorder_context: sort, # enable document reorder,dynamic_context_compression_ratio: 0.3,},)通过LLMLingua进行压缩 retrieved_nodes retriever.retrieve(question)synthesizer CompactAndRefine()from llama_index.indices.query.schema import QueryBundle# postprocess (compress), synthesizenew_retrieved_nodes node_postprocessor.postprocess_nodes(retrieved_nodes, query_bundleQueryBundle(query_strquestion))original_contexts \n\n.join([n.get_content() for n in retrieved_nodes])compressed_contexts \n\n.join([n.get_content() for n in new_retrieved_nodes])original_tokens node_postprocessor._llm_lingua.get_token_length(original_contexts)compressed_tokens node_postprocessor._llm_lingua.get_token_length(compressed_contexts) 打印2个结果对比 print(compressed_contexts)print()print(Original Tokens:, original_tokens)print(Compressed Tokens:, compressed_tokens)print(Comressed Ratio:, f{original_tokens/(compressed_tokens 1e-5):.2f}x)打印的结果如下 next Rtms advice hadn included anything that. I wanted to do something completely different, so I decided Id paint. I wanted to how good I could get if I focused on it. the day after stopped on YC, I painting. I was rusty and it took a while to get back into shape, but it was at least completely engaging.1]I wanted to back RISD, was now broke and RISD was very expensive so decided job for a year and return RISD the fall. I got one at Interleaf, which made software for creating documents. You like Microsoft Word? Exactly That was I low end software tends to high. Interleaf still had a few years to live yet. []the Accademia wasnt, and my money was running out, end year back to thelot the color class I tookD, but otherwise I was basically myself to do that for in993 I dropped I aroundidence bit then my friend Par did me a big A rent-partment building New York. Did I want it Itt more my place, and York be where the artists. wanted [For when you that ofs you big painting of this type hanging in the apartment of a hedge fund manager, you know he paid millions of dollars for it. Thats not always why artists have a signature style, but its usually why buyers pay a lot for such work. [6]Original Tokens: 10719Compressed Tokens: 308Comressed Ratio: 34.80x验证输出 response synthesizer.synthesize(question, new_retrieved_nodes)print(str(response))#Output#The author went to RISD for art school.总结 LLMLingua与LlamaIndex的集成证明了协作关系在优化大型语言模型(LLM)应用程序方面的变革潜力。这种协作彻底改变了即时压缩方法和推理效率为上下文感知、简化的LLM应用程序铺平了道路。 这种集成不仅加快了推理速度而且确保了在压缩提示中保持语义完整性。基于LlamaIndex特定领域提示的压缩策略微调在提示长度减少和基本上下文保留之间取得了平衡从而提高了LLM推理的准确性。 从本质上讲LLMLingua与LlamaIndex的集成超越了传统的提示压缩方法为未来大型语言模型应用程序的优化、上下文准确和有效地针对不同领域进行定制奠定了基础。这种协作集成预示着大型语言模型应用程序领域中效率和精细化的新时代的到来。 如果你对LLMLingua感兴趣在线的DMEO还有论文源代码等都在可以在这里找到 https://avoid.overfit.cn/post/0fb3b50283c541d78e4d40c9083b88d9
http://www.zqtcl.cn/news/600498/

相关文章:

  • php企业网站开发东莞网站建设时间
  • 仿win8网站模板网站开发接私活的经理
  • 仿牌网站 域名注册衡水安徽网站建设
  • 合肥义城建设集团有限公司网站专业建站公司电话咨询
  • 国外平面设计网站有哪些建商城网站公司
  • 深圳做响应式网站网站建设公司行业现状
  • 网站部署城阳网站开发公司
  • 旅游网站的网页设计素材如何网络推广运营
  • 惠州网站建设多少钱注册邮箱
  • 视频制作网站都有哪些网站优化的公司
  • 网站开发运营推广叫什么苏州seo关键词优化推广
  • 龙泉驿区建设局网站引流推广平台软件
  • 做盗版网站韩国服装网站建设
  • 网站策划书籍推荐高端网站设计制作的
  • 优秀电商设计网站有哪些微博网站可以做兼职吗
  • 网站建设 验证码电子商务网站建设流程图
  • 做内贸什么网站资源比较多岳阳网上房地产
  • 去国外网站开发客户中的contact us 没有邮箱失败营销案例100例
  • 网站怎么做图片动态图片大全靖江 建设局网站
  • 汉子由来 外国人做的网站wordpress微信小程序部署
  • 兰州网站建设最新招聘信息江苏网站建设简介模板
  • 最具口碑的企业网站建设企业做网站的流程
  • wordpress多语言企业网站网页制作工具按其制作方式有几种类型
  • 2019年做网站还有机会吗wordpress 虚拟订阅插件
  • 网站都有后台吗怀柔网站建设
  • phpcms 图片网站免费商城网站建设
  • 网站虚拟主机租用中铁建设门户网登录初始密码
  • 网站哪个公司做的好网站建设与管理指什么软件
  • 提升学历要多少钱seo关键字优化技巧
  • 代理会计公司网站模版哪家培训机构学校好