当前位置: 首页 > news >正文

会计题库网站怎么做免费注册个网站

会计题库网站怎么做,免费注册个网站,小红网站建设,图片手机显示wordpressESTAN#xff1a;用于乳腺超声图像分割的增强型小肿瘤感知网络 摘要引言 ESTAN Enhanced Small Tumor-Aware Network for Breast Ultrasound Image Segmentation 摘要 乳腺肿瘤分割是用于乳腺癌检测的计算机辅助诊断#xff08;CAD#xff09;系统中的关键任务#xff0c;… ESTAN用于乳腺超声图像分割的增强型小肿瘤感知网络 摘要引言 ESTAN Enhanced Small Tumor-Aware Network for Breast Ultrasound Image Segmentation 摘要 乳腺肿瘤分割是用于乳腺癌检测的计算机辅助诊断CAD系统中的关键任务因为准确的肿瘤大小、形状和位置对于进一步的肿瘤量化和分类是重要的。然而由于斑点噪声、患者之间不同的肿瘤形状和大小以及肿瘤样图像区域的存在分割超声图像中的小肿瘤具有挑战性。最近基于深度学习的方法在生物医学图像分析方面取得了巨大成功但目前最先进的方法在分割小乳腺肿瘤方面表现不佳。在本文中我们提出了一种新的深度神经网络架构即增强型小肿瘤感知网络ESTAN以准确和鲁棒地分割乳腺肿瘤。增强的小肿瘤感知网络引入了两个编码器来提取和融合不同尺度的图像上下文信息并利用行列内核来适应乳房解剖结构。我们比较了ESTAN和九种最先进的方法在三个公共乳腺超声数据集上使用七个定量指标即BUSIS、数据集B和BUSI。实验结果表明该方法在小肿瘤分割方面取得了最好的整体性能优于其他所有方法。具体地ESTAN在三个数据集上的Dice相似系数DSC分别为0.92、0.82和0.78;并且ESTAN在三个小肿瘤数据集上的DSC分别为0.89、0.80和0.81。 引言 乳腺超声BUS成像是一种有效的筛查方法由于其无痛非侵入性非放射性和成本效益的性质。乳腺超声图像分割的目的是从图像中的正常乳腺组织中提取肿瘤区域。这是BUS计算机辅助诊断CAD系统中的一个重要步骤。然而由于斑点噪声图像质量差以及可变的肿瘤形状和大小准确的BUS图像分割是具有挑战性的。 根据美国国家癌症研究所的数据在美国如果乳腺癌在早期阶段被发现和治疗相对生存率为99%如果癌症已经扩散到身体的其他器官则只有27%[1]。乳腺肿瘤的早期发现是降低死亡率的关键。然而在早期阶段大多数肿瘤都很小在BUS图像中占据相对较小的区域。将它们与正常乳腺组织区分开来具有挑战性。因此准确检测小肿瘤对于早期乳腺癌检测至关重要可以改善临床决策治疗计划和恢复。 BUS图像分割的方法可以分为传统方法和基于深度学习的方法。许多传统方法已用于BUS图像分割例如阈值[15-21]区域生长[2223]和分水岭[2425]。尽管它们简单但这些方法需要在提取特征方面的知识和专业知识并且由于可扩展性差和对噪声的高敏感性它们不鲁棒。关于BUS图像分割的全面回顾请参阅[26]。 最近已经开发了几种用于BUS图像分割的深度学习方法[2-14];表1列出了用于BUS图像分割的最新深度学习方法。Huang等人。[2]提出了一种模糊全卷积网络来执行BUS图像分割。采用模糊逻辑来解决BUS图像和特征图中的不确定性问题。对比度增强和小波特征作为预处理技术以增加训练数据。通过模糊隶属度函数将增强的训练图像集和卷积层特征转换到模糊域中。背景信息和人体乳房结构被集成到条件随机场CRF以增强分割结果。雅普等人[3]评估了三种不同的深度学习方法的性能基于补丁的LeNetU-Net以及在两个BUS数据集数据集A和数据集B上使用预训练的AlexNet的迁移学习。迁移学习AlexNet在数据集A上的真阳性和F-measure指标方面优于所有其他指标而基于补丁的LeNet在数据集B上的每图像假阳性指标方面取得了最佳结果。虽然结果表明为其他任务设计的不同深度学习方法可以在BUS数据集上采用和训练但所有方法都无法在两个数据集上实现所有评估指标的最佳结果。Amiri等人[4]研究了迁移学习和微调U-Net架构配置的重要性以解决超声图像数据稀缺的问题。针对小型BUS数据集微调U-Net的浅层获得了最佳结果;然而针对大型BUS数据集微调整个网络或浅层没有显著差异。请参阅[2627]了解更多用于医学图像分割的深度学习方法。 [2]提出了一种模糊全卷积网络来执行BUS图像分割。采用模糊逻辑来解决BUS图像和特征图中的不确定性问题 Huang,K.; Zhang, Y;Cheng,H.D.;Xing,P; Zhang,B.Fuzzy Semantic Segmentation of Breast Ultrasound Image with BreastAnatomy Constraints. arXio 2019, arXiv:1909.06645. [7]提出了一种DFCN方法该方法将扩张的全卷积网络与基于相位的活动轮廓PBAC模型相结合以自动分割乳腺肿瘤。具有PBAC网络的DFCN对噪声和模糊边界具有更强的鲁棒性并且成功地分割了具有大量阴影的肿瘤 Hu, Y.; Guo, Y.; Wang, Y.; Yu, J.; Li, J.; Zhou, S.; Chang, C. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Med. Phys. 2018, 46, 215–228. [CrossRef] [9]提出了一种基于熵参数映射和注意力门控U-Net网络的BUS图像深度学习分割方法。该模型取得了很好的改善但有不足的结果和分析以显示熵图的意义此外Nair等人[5]提出了一种具有两个解码器的DNN用于从原始单平面波通道数据创建BUS图像和分割掩码。这种方法显示出有希望的结果其中分割掩模和B模式图像都是使用原始数据在单个网络中生成的。Zhuang等人[6]提出了一种基于U-Net架构的RDAU-Net模型用于在BUS图像上执行肿瘤分割任务。在U-Net中分别用膨胀的剩余块和注意门来代替基本块和原始的跳跃连接。RDAU-Net设计提高了模型的整体灵敏度和准确性。类似地Hu等人[7]提出了一种DFCN方法该方法将扩张的全卷积网络与基于相位的活动轮廓PBAC模型相结合以自动分割乳腺肿瘤。具有PBAC网络的DFCN对噪声和模糊边界具有更强的鲁棒性并且成功地分割了具有大量阴影的肿瘤。 此外Vakanski等人。[8]将放射科医生的视觉注意力与U-Net模型相结合以执行BUS分割。该模型设计了注意力块以忽略显著性低的区域并强调更多显著性高的区域。这项研究优于U-Net模型并成功地将先验知识信息结合到卷积神经网络中。Byra等人。[9]提出了一种基于熵参数映射和注意力门控U-Net网络的BUS图像深度学习分割方法。该模型取得了很好的改善但有不足的结果和分析以显示熵图的意义。此外Moon等人。[10]提出了一种用于CAD系统的集成CNN架构包括在原始BUS图像分割图像肿瘤肿瘤掩模和融合图像上训练的多模型。通过结合原始图像、分割的肿瘤和肿瘤形状信息TSI来制备融合图像。结果表明融合图像取得了最好的结果在所有其他的该研究提供了一个明确的指导选择一个特定的数据集大小的方法。Lee等人。[11]提出了一种具有多尺度网格平均池的通道注意力模块用于分割BUS图像。该方法利用了局部和全局信息并取得了良好的整体分割性能。Chen等人[12]提出了双向关注和细化网络他们将其添加到U形网络之上以准确分割乳腺病变。然而在小数据集上训练这样的网络使得处理过拟合/欠拟合问题变得具有挑战性。这些方法取得了良好的整体性能。然而如图1所示它们未能在分割小肿瘤方面实现良好的性能。首先这些方法旨在使用为学习自然图像中的特征而开发的通用平方核来提高整体性能。其次目前所有可用的BUS数据集都很小大多数基于深度学习的方法都需要大量高质量的训练集。 这项工作的灵感来自于当前小目标检测和/或分割的进展这是计算机视觉中的一项重要任务因为它构成了许多图像相关任务的基础例如遥感场景理解对象跟踪实例和全景分割航空航天检测和图像字幕。Chen等人。[28]提出了一种用于R-CNN算法的增强技术具有上下文模型和小区域建议生成器这是小对象检测的第一个基准数据集。Krishna等人。[29]设计了一个更快的R-CNN模型采用了修改后的上采样技术以提高小对象检测的性能。Guan等人。[30]提出了一种语义上下文感知网络SCAN它集成了位置融合模块和上下文融合模块来检测语义和上下文特征。Dong [31]提出了DenseU-Net架构用于城市遥感图像中小对象的语义分割。它使用残差连接和具有中值频率平衡的加权焦点损失函数来提高小目标检测的性能。据我们所知STAN [14]是第一个专门为小肿瘤分割设计的深度学习架构。采用三个跳跃连接和两个编码器从收缩部分的不同层提取多尺度上下文信息。小肿瘤感知网络在分割BUS图像中的小肿瘤方面优于其他深度学习方法。然而它对小肿瘤的平均假阳性率FPR远大于对大肿瘤的FPR。
http://www.zqtcl.cn/news/555875/

相关文章:

  • 做网站需要什么人活动策划流程及细节
  • wordpress企业网站seo上海市
  • 北京建外贸网站公司网络域名是什么
  • 聚美优品网站建设方案上市公司的信息网站
  • 济南做网站比较好的公司知道吗为什么做美食视频网站
  • 药店网站源码宣传方式
  • word如何做网站链接淘宝客建站需要多少钱
  • 凡科网免费建站步骤及视频logo设计网页
  • 天梯网站建设软件开发公司职位
  • 建站公司外贸东方购物网上商城
  • 白银做网站企业免费网站模板
  • 网络公司给我们做的网站_但是我们不知道域名是否属于我们湖北正规网站建设质量保障
  • 本地网站asp iis团队展示网站
  • 企业网站管理系统cmswordpress知识管理系统
  • 创建一个网站需要怎么做销售平台公司
  • 网站域名实名认证吗做斗图的网站
  • 公司在兰州要做网站怎样选择做网站数据库表各字段详情
  • 营销型网站建设的要素搭建本地网站
  • 深圳网站建设V芯ee8888ewordpress瀑布流主 #65533;
  • 股票交易网站开发angular2做的网站有
  • 如何建立免费个人网站angularjs 网站开发
  • 湖南信息网官方网站安徽省房地产开发项目管理系统
  • a5建站无限动力网站
  • 南京网站建设王道下拉??怎么做免费网站推
  • WordPress站群 管理icp备案网站管理员有负责吗
  • 智慧团建官方网站登录做网站网站的虚拟空间
  • 自己做网站成本推广代理平台
  • wamp搭建多个网站网站设计方面有什么公司
  • 九江集团网站建设app广告对接平台
  • 个人网页网站制作模板搜索引擎营销经典案例