当前位置: 首页 > news >正文

广州网站建设电话工商局注册官网入口

广州网站建设电话,工商局注册官网入口,网站做关键词库的作用,微信二维码文章目录 数据准备建立模型建立输入层 x建立隐藏层h1建立隐藏层h2建立输出层 定义训练方式建立训练数据label真实值 placeholder定义loss function选择optimizer 定义评估模型的准确率计算每一项数据是否正确预测将计算预测正确结果#xff0c;加总平均 开始训练画出误差执行结… 文章目录 数据准备建立模型建立输入层 x建立隐藏层h1建立隐藏层h2建立输出层 定义训练方式建立训练数据label真实值 placeholder定义loss function选择optimizer 定义评估模型的准确率计算每一项数据是否正确预测将计算预测正确结果加总平均 开始训练画出误差执行结果画出准确率执行结果 评估模型的准确率进行预测找出预测错误 GITHUB地址https://github.com/fz861062923/TensorFlow 注意下载数据连接的是外网有一股神秘力量让你403 数据准备 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_datamnist input_data.read_data_sets(MNIST_data/, one_hotTrue)C:\Users\admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from float to np.floating is deprecated. In future, it will be treated as np.float64 np.dtype(float).type.from ._conv import register_converters as _register_convertersWARNING:tensorflow:From ipython-input-1-2ee827ab903d:4: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version. Instructions for updating: Please use alternatives such as official/mnist/dataset.py from tensorflow/models. WARNING:tensorflow:From C:\Users\admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version. Instructions for updating: Please write your own downloading logic. WARNING:tensorflow:From C:\Users\admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version. Instructions for updating: Please use tf.data to implement this functionality. Extracting MNIST_data/train-images-idx3-ubyte.gz WARNING:tensorflow:From C:\Users\admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version. Instructions for updating: Please use tf.data to implement this functionality. Extracting MNIST_data/train-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Users\admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version. Instructions for updating: Please use tf.one_hot on tensors. WARNING:tensorflow:From C:\Users\admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\base.py:252: _internal_retry.locals.wrap.locals.wrapped_fn (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version. Instructions for updating: Please use urllib or similar directly. Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes. Extracting MNIST_data/t10k-images-idx3-ubyte.gz Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes. Extracting MNIST_data/t10k-labels-idx1-ubyte.gz WARNING:tensorflow:From C:\Users\admin\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version. Instructions for updating: Please use alternatives such as official/mnist/dataset.py from tensorflow/models.print(train images :, mnist.train.images.shape,labels: , mnist.train.labels.shape) print(validation images:, mnist.validation.images.shape, labels: , mnist.validation.labels.shape) print(test images :, mnist.test.images.shape,labels: , mnist.test.labels.shape)train images : (55000, 784) labels: (55000, 10) validation images: (5000, 784) labels: (5000, 10) test images : (10000, 784) labels: (10000, 10)建立模型 def layer(output_dim,input_dim,inputs, activationNone):#激活函数默认为NoneW tf.Variable(tf.random_normal([input_dim, output_dim]))#以正态分布的随机数建立并且初始化权重Wb tf.Variable(tf.random_normal([1, output_dim]))XWb tf.matmul(inputs, W) bif activation is None:outputs XWbelse:outputs activation(XWb)return outputs建立输入层 x x tf.placeholder(float, [None, 784])建立隐藏层h1 h1layer(output_dim1000,input_dim784,inputsx ,activationtf.nn.relu) 建立隐藏层h2 h2layer(output_dim1000,input_dim1000,inputsh1 ,activationtf.nn.relu) 建立输出层 y_predictlayer(output_dim10,input_dim1000,inputsh2,activationNone)定义训练方式 建立训练数据label真实值 placeholder y_label tf.placeholder(float, [None, 10])#训练数据的个数很多所以设置为None定义loss function # 深度学习模型的训练中使用交叉熵训练的效果比较好 loss_function tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logitsy_predict , labelsy_label))选择optimizer optimizer tf.train.AdamOptimizer(learning_rate0.001) \.minimize(loss_function) #使用Loss_function来计算误差并且按照误差更新模型权重与偏差使误差最小化定义评估模型的准确率 计算每一项数据是否正确预测 correct_prediction tf.equal(tf.argmax(y_label , 1),tf.argmax(y_predict, 1))#将one-hot encoding转化为1所在的位数,方便比较将计算预测正确结果加总平均 accuracy tf.reduce_mean(tf.cast(correct_prediction, float))开始训练 trainEpochs 15#执行15个训练周期 batchSize 100#每一批的数量为100 totalBatchs int(mnist.train.num_examples/batchSize)#计算每一个训练周期应该执行的次数 epoch_list[];accuracy_list[];loss_list[]; from time import time startTimetime() sess tf.Session() sess.run(tf.global_variables_initializer())for epoch in range(trainEpochs):#执行15个训练周期#每个训练周期执行550批次训练for i in range(totalBatchs):batch_x, batch_y mnist.train.next_batch(batchSize)#用该函数批次读取数据sess.run(optimizer,feed_dict{x: batch_x,y_label: batch_y})#使用验证数据计算准确率loss,acc sess.run([loss_function,accuracy],feed_dict{x: mnist.validation.images, #验证数据的featuresy_label: mnist.validation.labels})#验证数据的labelepoch_list.append(epoch)loss_list.append(loss);accuracy_list.append(acc) print(Train Epoch:, %02d % (epoch1), \Loss,{:.9f}.format(loss), Accuracy,acc)duration time()-startTime print(Train Finished takes:,duration) Train Epoch: 01 Loss 133.117172241 Accuracy 0.9194 Train Epoch: 02 Loss 88.949943542 Accuracy 0.9392 Train Epoch: 03 Loss 80.701606750 Accuracy 0.9446 Train Epoch: 04 Loss 72.045913696 Accuracy 0.9506 Train Epoch: 05 Loss 71.911483765 Accuracy 0.9502 Train Epoch: 06 Loss 63.642936707 Accuracy 0.9558 Train Epoch: 07 Loss 67.192626953 Accuracy 0.9494 Train Epoch: 08 Loss 55.959281921 Accuracy 0.9618 Train Epoch: 09 Loss 58.867351532 Accuracy 0.9592 Train Epoch: 10 Loss 61.904548645 Accuracy 0.9612 Train Epoch: 11 Loss 58.283069611 Accuracy 0.9608 Train Epoch: 12 Loss 54.332244873 Accuracy 0.9646 Train Epoch: 13 Loss 58.152175903 Accuracy 0.9624 Train Epoch: 14 Loss 51.552104950 Accuracy 0.9688 Train Epoch: 15 Loss 52.803482056 Accuracy 0.9678 Train Finished takes: 545.0556836128235画出误差执行结果 %matplotlib inline import matplotlib.pyplot as plt fig plt.gcf()#获取当前的figure图 fig.set_size_inches(4,2)#设置图的大小 plt.plot(epoch_list, loss_list, label loss) plt.ylabel(loss) plt.xlabel(epoch) plt.legend([loss], locupper left)matplotlib.legend.Legend at 0x1edb8d4c240画出准确率执行结果 plt.plot(epoch_list, accuracy_list,labelaccuracy ) fig plt.gcf() fig.set_size_inches(4,2) plt.ylim(0.8,1) plt.ylabel(accuracy) plt.xlabel(epoch) plt.legend() plt.show()评估模型的准确率 print(Accuracy:, sess.run(accuracy,feed_dict{x: mnist.test.images, y_label: mnist.test.labels}))Accuracy: 0.9643进行预测 prediction_resultsess.run(tf.argmax(y_predict,1),feed_dict{x: mnist.test.images })prediction_result[:10]array([7, 2, 1, 0, 4, 1, 4, 9, 6, 9], dtypeint64)import matplotlib.pyplot as plt import numpy as np def plot_images_labels_prediction(images,labels,prediction,idx,num10):fig plt.gcf()fig.set_size_inches(12, 14)if num25: num25 for i in range(0, num):axplt.subplot(5,5, 1i)ax.imshow(np.reshape(images[idx],(28, 28)), cmapbinary)title label str(np.argmax(labels[idx]))if len(prediction)0:title,predictstr(prediction[idx]) ax.set_title(title,fontsize10) ax.set_xticks([]);ax.set_yticks([]) idx1 plt.show()plot_images_labels_prediction(mnist.test.images,mnist.test.labels,prediction_result,0)y_predict_Onehotsess.run(y_predict,feed_dict{x: mnist.test.images })y_predict_Onehot[8]array([-6185.544 , -5329.589 , 1897.1707 , -3942.7764 , 347.9809 ,5513.258 , 6735.7153 , -5088.5273 , 649.2062 , 69.50408],dtypefloat32)找出预测错误 for i in range(400):if prediction_result[i]!np.argmax(mnist.test.labels[i]):print(istr(i) label,np.argmax(mnist.test.labels[i]),predict,prediction_result[i])i8 label 5 predict 6 i18 label 3 predict 8 i149 label 2 predict 4 i151 label 9 predict 8 i233 label 8 predict 7 i241 label 9 predict 8 i245 label 3 predict 5 i247 label 4 predict 2 i259 label 6 predict 0 i320 label 9 predict 1 i340 label 5 predict 3 i381 label 3 predict 7 i386 label 6 predict 5sess.close()
http://www.zqtcl.cn/news/594564/

相关文章:

  • 一键建站网站seo关键词快速排名介绍
  • 自己做网站 什么wordpress博客文章加密
  • 怎样做音视频宣传网站wordpress 推送
  • 网站图片上传代码专业的企业进销存软件定制
  • 商品网站模板wordpress文章推荐
  • 十里堡网站建设做吃的教程网站
  • 比较好的源码网站河南网站seo推广
  • 做网站推广什么好网站界面结构
  • 龙岗网站优化常见的渠道推广方式有哪些
  • wordpress 后台乱码成都百度推广优化
  • 大连 响应式网站wordpress保存图片不显示
  • 二手车网站建站网站建设企业建站要求
  • 海山免费网站建设做视频网站如何赚钱
  • 网站增加点击率 怎样做小店面设计装修网
  • 一 美食 视频网站模板下载安装外国优秀网站欣赏
  • 网站服务器部署重庆涪陵网站建设公司
  • php网站开发实践要做网站照片怎么处理
  • 网站短期就业培训班搜集关键词的网站
  • 社区网站开发淘宝网站打算找人做
  • 政务类网站网页管理平台
  • 淘宝联盟微信里做网站花卉市场网站建设基本步骤
  • 做网站广告语网站注册建设
  • 仓山福州网站建设哪个是网站建设里面的
  • 开网站流程开发公司起名
  • 免费建站优化网站基本设置
  • 网站建设需要上传数据库吗seo自己做网站吗
  • 网站制作ppt杭州网站的特点
  • 美丽寮步网站建设价钱杭州网站设计询问蓝韵网络
  • 毕节网站建设公司网站职业技术培训学校
  • 果洛wap网站建设比较好17岁在线观看免费高清完整版