当前位置: 首页 > news >正文

网站建设管理报告网站建立后怎么做推广

网站建设管理报告,网站建立后怎么做推广,三河市建设局网站,东莞企业网站建设制作深度学习#xff08;37#xff09;—— 图神经网络GNN#xff08;2#xff09; 这一期主要是一些简单示例#xff0c;针对不同的情况#xff0c;使用的数据都是torch_geometric的内置数据集 文章目录 深度学习#xff08;37#xff09;—— 图神经网络GNN#xff08…深度学习37—— 图神经网络GNN2 这一期主要是一些简单示例针对不同的情况使用的数据都是torch_geometric的内置数据集 文章目录 深度学习37—— 图神经网络GNN21. 一个graph对节点分类2. 多个graph对图分类3.Cluster-GCN:当遇到数据很大的图 1. 一个graph对节点分类 from torch_geometric.datasets import Planetoid # 下载数据集用的 from torch_geometric.transforms import NormalizeFeatures from torch_geometric.nn import GCNConv import matplotlib.pyplot as plt from sklearn.manifold import TSNE import torch from torch.nn import Linear import torch.nn.functional as F# 可视化部分 def visualize(h, color):z TSNE(n_components2).fit_transform(h.detach().cpu().numpy())plt.figure(figsize(10, 10))plt.xticks([])plt.yticks([])plt.scatter(z[:, 0], z[:, 1], s70, ccolor, cmapSet2)plt.show()# 加载数据 dataset Planetoid(rootdata/Planetoid, nameCora, transformNormalizeFeatures()) # transform预处理 print(fDataset: {dataset}:) print() print(fNumber of graphs: {len(dataset)}) print(fNumber of features: {dataset.num_features}) print(fNumber of classes: {dataset.num_classes})data dataset[0] # Get the first graph object. print() print(data) print()# Gather some statistics about the graph. print(fNumber of nodes: {data.num_nodes}) print(fNumber of edges: {data.num_edges}) print(fAverage node degree: {data.num_edges / data.num_nodes:.2f}) print(fNumber of training nodes: {data.train_mask.sum()}) print(fTraining node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}) print(fHas isolated nodes: {data.has_isolated_nodes()}) print(fHas self-loops: {data.has_self_loops()}) print(fIs undirected: {data.is_undirected()})# 网络定义 class GCN(torch.nn.Module):def __init__(self, hidden_channels):super().__init__()torch.manual_seed(1234567)self.conv1 GCNConv(dataset.num_features, hidden_channels)self.conv2 GCNConv(hidden_channels, dataset.num_classes)def forward(self, x, edge_index):x self.conv1(x, edge_index)x x.relu()x F.dropout(x, p0.5, trainingself.training)x self.conv2(x, edge_index)return xmodel GCN(hidden_channels16) print(model)# 训练模型 optimizer torch.optim.Adam(model.parameters(), lr0.01, weight_decay5e-4) criterion torch.nn.CrossEntropyLoss()def train():model.train()optimizer.zero_grad()out model(data.x, data.edge_index)loss criterion(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()return lossdef test():model.eval()out model(data.x, data.edge_index)pred out.argmax(dim1)test_correct pred[data.test_mask] data.y[data.test_mask]test_acc int(test_correct.sum()) / int(data.test_mask.sum())return test_accfor epoch in range(1, 101):loss train()print(fEpoch: {epoch:03d}, Loss: {loss:.4f})test_acc test() print(fTest Accuracy: {test_acc:.4f}) model.eval() out model(data.x, data.edge_index) visualize(out, colordata.y)2. 多个graph对图分类 图也可以进行batch做法和图像以及文本的batch是一样的和对一张图中的节点分类不同的是多了聚合操作 将各个节点特征汇总成全局特征将其作为整个图的编码 import torch from torch_geometric.datasets import TUDataset # 分子数据集https://chrsmrrs.github.io/datasets/ from torch_geometric.loader import DataLoader from torch.nn import Linear import torch.nn.functional as F from torch_geometric.nn import GCNConv from torch_geometric.nn import global_mean_pool# 加载数据 dataset TUDataset(rootdata/TUDataset, nameMUTAG) print(fDataset: {dataset}:) print() print(fNumber of graphs: {len(dataset)}) print(fNumber of features: {dataset.num_features}) print(fNumber of classes: {dataset.num_classes})data dataset[0] # Get the first graph object. print(data) print()# Gather some statistics about the first graph. # print(fNumber of nodes: {data.num_nodes}) # print(fNumber of edges: {data.num_edges}) # print(fAverage node degree: {data.num_edges / data.num_nodes:.2f}) # print(fHas isolated nodes: {data.has_isolated_nodes()}) # print(fHas self-loops: {data.has_self_loops()}) # print(fIs undirected: {data.is_undirected()})train_dataset dataset print(fNumber of training graphs: {len(train_dataset)})# 数据用dataloader加载 train_loader DataLoader(train_dataset, batch_size8, shuffleTrue) for step, data in enumerate(train_loader):print(fStep {step 1}:)print()print(fNumber of graphs in the current batch: {data.num_graphs})print(data)print()# 模型定义 class GCN(torch.nn.Module):def __init__(self, hidden_channels):super(GCN, self).__init__()torch.manual_seed(12345)self.conv1 GCNConv(dataset.num_node_features, hidden_channels)self.conv2 GCNConv(hidden_channels, hidden_channels)self.conv3 GCNConv(hidden_channels, hidden_channels)self.lin Linear(hidden_channels, dataset.num_classes)def forward(self, x, edge_index, batch):# 1.对各节点进行编码x self.conv1(x, edge_index)x x.relu()x self.conv2(x, edge_index)x x.relu()x self.conv3(x, edge_index)# 2. 平均操作x global_mean_pool(x, batch) # [batch_size, hidden_channels]# 3. 输出x F.dropout(x, p0.5, trainingself.training)x self.lin(x)return xmodel GCN(hidden_channels64) print(model)# 训练 optimizer torch.optim.Adam(model.parameters(), lr0.01) criterion torch.nn.CrossEntropyLoss() def train():model.train()for data in train_loader: # Iterate in batches over the training dataset.out model(data.x, data.edge_index, data.batch) # Perform a single forward pass.loss criterion(out, data.y) # Compute the loss.loss.backward() # Derive gradients.optimizer.step() # Update parameters based on gradients.optimizer.zero_grad() # Clear gradients.def test(loader):model.eval()correct 0for data in loader: # Iterate in batches over the training/test dataset.out model(data.x, data.edge_index, data.batch)pred out.argmax(dim1) # Use the class with highest probability.correct int((pred data.y).sum()) # Check against ground-truth labels.return correct / len(loader.dataset) # Derive ratio of correct predictions.for epoch in range(1, 3):train()train_acc test(train_loader)print(fEpoch: {epoch:03d}, Train Acc: {train_acc:.4f})3.Cluster-GCN:当遇到数据很大的图 传统的GCN层数越多计算越大针对每个cluster进行GCN计算之后更新数据量会小很多 但是存在问题如果将一个大图聚类成多个小图最大的问题是如何丢失这些子图之间的连接关系——在每个batch中随机将batch里随机n个子图连接起来再计算 使用torch_geometric的内置方法 首先使用cluster方法分区之后使用clusterloader构建batch 【即】分区后对每个区域进行batch的分配 # 遇到特别大的图该怎么办 # 图中点和边的个数都非常大的时候会遇到什么问题呢 # 当层数较多时显存不够import torch import torch.nn.functional as F from torch_geometric.nn import GCNConv from torch_geometric.datasets import Planetoid from torch_geometric.transforms import NormalizeFeatures from torch_geometric.loader import ClusterData, ClusterLoaderdataset Planetoid(rootdata/Planetoid, namePubMed, transformNormalizeFeatures()) print(fDataset: {dataset}:) print() print(fNumber of graphs: {len(dataset)}) print(fNumber of features: {dataset.num_features}) print(fNumber of classes: {dataset.num_classes})data dataset[0] # Get the first graph object. print(data) print()# Gather some statistics about the graph. print(fNumber of nodes: {data.num_nodes}) print(fNumber of edges: {data.num_edges}) print(fAverage node degree: {data.num_edges / data.num_nodes:.2f}) print(fNumber of training nodes: {data.train_mask.sum()}) print(fTraining node label rate: {int(data.train_mask.sum()) / data.num_nodes:.3f}) print(fHas isolated nodes: {data.has_isolated_nodes()}) print(fHas self-loops: {data.has_self_loops()}) print(fIs undirected: {data.is_undirected()})# 数据分区构建batch构建好batch1个epoch中有4个batch torch.manual_seed(12345) cluster_data ClusterData(data, num_parts128) # 1. 分区 train_loader ClusterLoader(cluster_data, batch_size32, shuffleTrue) # 2. 构建batch.total_num_nodes 0 for step, sub_data in enumerate(train_loader):print(fStep {step 1}:)print()print(fNumber of nodes in the current batch: {sub_data.num_nodes})print(sub_data)print()total_num_nodes sub_data.num_nodes print(fIterated over {total_num_nodes} of {data.num_nodes} nodes!)# 模型定义 class GCN(torch.nn.Module):def __init__(self, hidden_channels):super(GCN, self).__init__()torch.manual_seed(12345)self.conv1 GCNConv(dataset.num_node_features, hidden_channels)self.conv2 GCNConv(hidden_channels, dataset.num_classes)def forward(self, x, edge_index):x self.conv1(x, edge_index)x x.relu()x F.dropout(x, p0.5, trainingself.training)x self.conv2(x, edge_index)return xmodel GCN(hidden_channels16) print(model)# 训练模型 optimizer torch.optim.Adam(model.parameters(), lr0.01, weight_decay5e-4) criterion torch.nn.CrossEntropyLoss()def train():model.train()for sub_data in train_loader:out model(sub_data.x, sub_data.edge_index)loss criterion(out[sub_data.train_mask], sub_data.y[sub_data.train_mask])loss.backward()optimizer.step()optimizer.zero_grad()def test():model.eval()out model(data.x, data.edge_index)pred out.argmax(dim1)accs []for mask in [data.train_mask, data.val_mask, data.test_mask]:correct pred[mask] data.y[mask]accs.append(int(correct.sum()) / int(mask.sum()))return accsfor epoch in range(1, 51):loss train()train_acc, val_acc, test_acc test()print(fEpoch: {epoch:03d}, Train: {train_acc:.4f}, Val Acc: {val_acc:.4f}, Test Acc: {test_acc:.4f})这个还是很基础的一些下一篇会说如何定义自己的数据。还有进阶版的案例。 所有项目代码已经放在github上了欢迎造访
http://www.zqtcl.cn/news/726595/

相关文章:

  • 做外贸最好的网站有哪些php网站开发工程师待遇
  • 做推文封面的网站首页>新闻>正文 网站怎么做
  • 黄页推广引流网站企业网站导航菜单
  • 合肥专门做网站的公司广告代理商是什么意思
  • wordpress显示一个类目seo推广
  • 营销型电子商务网站特点如何申请免费空间和域名
  • 网站建设 主要学是么vk汉化网站谁做的
  • 做英文网站费用多少学校网站开发毕业设计
  • 红动中国设计网站官网网页制作的论文
  • 云阳一平米网站建设西安设计工作室推荐
  • 网站长尾关键词优化网页设计定制代理
  • 海东电子商务网站建设运城市网站建设公司
  • 网站建设得要素电子商务网站建设与维护项目五
  • 网站备案无前置审批文件南宁市建设厅网站
  • 百度网站体检手机网页小游戏
  • 大型购物网站建设费用广告设计与制作软件有哪些
  • 郑州建设工程交易中心网站汉寿做网站的公司
  • 青岛企业做网站startuply中文版wordpress主题
  • 商标设计网站猪八戒网站建设与设计教程
  • 网站建设积分wordpress添加右侧菜单
  • 网站策划资料方案天津优化公司
  • 做网站推广哪家公司好成都最正规的装修公司
  • 菜鸟建网站如何制作推广网站
  • 无锡企业建站系统广州品牌网站建设
  • 什么网站能免费做公众号封面wordpress主题打不开
  • 扬州外贸网站建设制作广告的软件
  • 一个主机怎么做两个网站百度上的网站怎么做
  • 济南建设工程业绩公示的网站wordpress载入等待
  • seo公司名字太原百度seo排名软件
  • 安徽省城乡建设厅网站拼多多关键词排名在哪里看