当前位置: 首页 > news >正文

网站收录检测标题设计网站

网站收录检测,标题设计网站,dw手机销售网站制作,最近最新资源在线观看clickhouse 新特性#xff1a; 从clickhouse 22.3至最新的版本24.3.2.23#xff0c;clickhouse在快速发展中#xff0c;每个版本都增加了一些新的特性#xff0c;在数据写入、查询方面都有性能加速。 本文根据clickhouse blog中的clickhouse release blog中#xff0c;学…clickhouse 新特性 从clickhouse 22.3至最新的版本24.3.2.23clickhouse在快速发展中每个版本都增加了一些新的特性在数据写入、查询方面都有性能加速。 本文根据clickhouse blog中的clickhouse release blog中学习并梳理了一些在实际工作中可能用到的新特性。 以下是如何基于docker如果试用这些新性 docker run -d --namech -p 8123:8123 -p 9000:9000 -p 9009:9009 --ulimit nofile262144:262144 -v D:/ch/latest/external:/external:rw -v chlatest:/var/lib/clickhouse:rw -v D:/ch/latest/logs:/var/log/clickhouse-server:rw -v D:/ch/latest/etc/clickhouse-server:/etc/clickhouse-server:rw clickhouse/clickhouse-server:24.3.2.23docker exec -it bashclickhouse-client --format_csv_delimiter,transform函数 进行字典替换 transform(x, array_from, array_to, default) transform(T, Array(T), Array(U), U) - U transform(x, array_from, array_to)UK-house-price-dataset.csv CREATE TABLE uk_price_paid (price UInt32,date Date,postcode1 LowCardinality(String),postcode2 LowCardinality(String),type Enum8(terraced 1, semi-detached 2, detached 3, flat 4, other 0),is_new UInt8,duration Enum8(freehold 1, leasehold 2, unknown 0),addr1 String,addr2 String,street LowCardinality(String),locality LowCardinality(String),town LowCardinality(String),district LowCardinality(String),county LowCardinality(String) ) ENGINE MergeTree ORDER BY (postcode1, postcode2, addr1, addr2);INSERT INTO uk_price_paid WITHsplitByChar( , postcode) AS p SELECTtoUInt32(price_string) AS price,parseDateTimeBestEffortUS(time) AS date,p[1] AS postcode1,p[2] AS postcode2,transform(a, [T, S, D, F, O], [terraced, semi-detached, detached, flat, other]) AS type,b Y AS is_new,transform(c, [F, L, U], [freehold, leasehold, unknown]) AS duration, addr1, addr2, street, locality, town, district, county FROM file(UK-house-price-dataset.csv,CSV,uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String );SELECT transform(number, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [zero, one, two, three, four, five, six, seven, eight, nine], NULL) AS numbers FROM system.numbers LIMIT 10读取文件 可以自动识别文件的类型推荐字段类型 SELECT * FROM ( WITHsplitByChar( , postcode) AS p SELECTtoUInt32(price_string) AS price,parseDateTimeBestEffortUS(time) AS date,p[1] AS postcode1,p[2] AS postcode2,transform(a, [T, S, D, F, O], [terraced, semi-detached, detached, flat, other]) AS type,b Y AS is_new,transform(c, [F, L, U], [freehold, leasehold, unknown]) AS duration, addr1, addr2, street, locality, town, district, county FROM file(UK-house-price-dataset.csv,CSV,uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String ) SETTINGS format_csv_delimiter, ) LIMIT 2; 自定义函数 根据需要编写自定义函数 CREATE OR REPLACE TABLE line_changes (version UInt32,line_change_type Enum(Add 1, Delete 2, Modify 3),line_number UInt32,line_content String,time datetime default now() ) ENGINE MergeTree ORDER BY time;INSERT INTO default.line_changes (version,line_change_type,line_number,line_content) VALUES (1, Add , 1, ClickHouse provides SQL), (2, Add , 2, with improvements), (3, Add , 3, that makes it more friendly for analytical tasks.), (4, Add , 2, with many extensions), (5, Modify, 3, and powerful improvements), (6, Delete, 1, ), (7, Add , 1, ClickHouse provides a superset of SQL);-- add a string (str) into an array (arr) at a specific position (pos) CREATE OR REPLACE FUNCTION add AS (arr, pos, str) - arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos));-- delete the element at a specific position (pos) from an array (arr) CREATE OR REPLACE FUNCTION delete AS (arr, pos) - arrayConcat(arraySlice(arr, 1, pos-1), arraySlice(arr, pos1));-- replace the element at a specific position (pos) in an array (arr) CREATE OR REPLACE FUNCTION modify AS (arr, pos, str) - arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos1));arrayFold SELECT arrayFold((acc, v) - (acc v), [10, 20, 30], 0::UInt64) AS sum;CREATE OR REPLACE VIEW text_version AS WITH T1 AS (SELECT arrayZip(groupArray(line_change_type),groupArray(line_number),groupArray(line_content)) as line_opsFROM (SELECT * FROM line_changes WHERE version {version:UInt32} ORDER BY version ASC) ) SELECT arrayJoin(arrayFold((acc, v) - if(v.change_type Add, add(acc, v.line_nr, v.content),if(v.change_type Delete, delete(acc, v.line_nr),if(v.change_type Modify, modify(acc, v.line_nr, v.content), []))),line_ops::Array(Tuple(change_type String, line_nr UInt32, content String)),[]::Array(String))) as lines FROM T1;SELECT * FROM text_version(version 3);Parallel window functions 窗口函数采用并行计算性能大幅提升 SELECTcountry,day,max(tempAvg) AS temperature,avg(temperature) OVER (PARTITION BY country ORDER BY day ASC ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS moving_avg_temp FROM noaa WHERE country ! GROUP BYcountry,date AS day ORDER BYcountry ASC,day ASCFINAL 基于FINAL及enable_vertical_final,在如下引擎 ReplacingMergeTree、 AggregatingMergeTree引擎中可以快速查询到最新的数据 SELECTpostcode1,formatReadableQuantity(avg(price)) FROM uk_property_offers FINAL GROUP BY postcode1 ORDER BY avg(price) DESC LIMIT 3;SELECTpostcode1,formatReadableQuantity(avg(price)) FROM uk_property_offers GROUP BY postcode1 ORDER BY avg(price) DESC LIMIT 3 SETTINGS enable_vertical_final 1;Variant Type SET allow_experimental_variant_type1, use_variant_as_common_type 1;SELECTmap(Hello, 1, World, Mark) AS x,toTypeName(x) AS type FORMAT Vertical;SELECTarrayJoin([1, true, 3.4, Mark]) AS value,toTypeName(value)Row 1: ────── x: {Hello:1,World:Mark} type: Map(String, Variant(String, UInt8))┌─value─┬─toTypeName(value)─────────────────────┐ 1. │ true │ Variant(Bool, Float64, String, UInt8) │ 2. │ true │ Variant(Bool, Float64, String, UInt8) │ 3. │ 3.4 │ Variant(Bool, Float64, String, UInt8) │ 4. │ Mark │ Variant(Bool, Float64, String, UInt8) │└───────┴───────────────────────────────────────┘字符相似性函数 byteHammingDistance the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming. “karolin” and “kathrin” is 3.“karolin” and “kerstin” is 3.“kathrin” and “kerstin” is 4.0000 and 1111 is 4.2173896 and 2233796 is 3. editDistancea way of quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other. damerauLevenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau–Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other. jaroWinklerSimilarity: a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric levenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau–Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other. https://clickhouse.com/docs/en/sql-reference/functions/string-functions#dameraulevenshteindistance CREATE TABLE domains (domain String,rank Float64 ) ENGINE MergeTree ORDER BY domain;INSERT INTO domains SELECTc2 AS domain,1 / c1 AS rank FROM url(domains.csv, CSV);SELECTdomain,levenshteinDistance(domain, facebook.com) AS d1,damerauLevenshteinDistance(domain, facebook.com) AS d2,jaroSimilarity(domain, facebook.com) AS d3,jaroWinklerSimilarity(domain, facebook.com) AS d4 FROM domains ORDER BY d1 ASC LIMIT 10 Query id: 6f499f27-8274-4787-819a-b510322bdce3┌─domain────────┬─d1─┬─d2─┬─────────────────d3─┬─────────────────d4─┐1. │ facebook.com │ 0 │ 0 │ 1 │ 1 │2. │ facebonk.com │ 1 │ 1 │ 0.8838383838383838 │ 0.9303030303030303 │3. │ fabebook.com │ 1 │ 1 │ 0.914141414141414 │ 0.9313131313131312 │4. │ facabook.com │ 1 │ 1 │ 0.9444444444444443 │ 0.961111111111111 │5. │ facobook.com │ 1 │ 1 │ 0.8535353535353535 │ 0.8974747474747474 │6. │ facebook1.com │ 1 │ 1 │ 0.9743589743589745 │ 0.9846153846153847 │7. │ faceook.com │ 1 │ 1 │ 0.9722222222222221 │ 0.9833333333333333 │8. │ faacebook.com │ 1 │ 1 │ 0.9743589743589745 │ 0.9794871794871796 │9. │ faceboock.com │ 1 │ 1 │ 0.9326923076923077 │ 0.9596153846153846 │ 10. │ facebool.com │ 1 │ 1 │ 0.9444444444444443 │ 0.9666666666666666 │└───────────────┴────┴────┴────────────────────┴────────────────────┘Vectorized distance functions 可以作为向量数据库使用支持L2,cosineDistance,IP三种向量相似度的度量方法 https://clickhouse.com/blog/clickhouse-release-24-02 WITH dog AS search_term, (SELECT vectorFROM gloveWHERE word search_termLIMIT 1 ) AS target_vector SELECT word, cosineDistance(vector, target_vector) AS score FROM glove WHERE lower(word) ! lower(search_term) ORDER BY score ASC LIMIT 5;WITHdog AS search_term,(SELECT vectorFROM gloveWHERE word search_termLIMIT 1) AS target_vector SELECTword,1 - dotProduct(vector, target_vector) AS score FROM glove WHERE lower(word) ! lower(search_term) ORDER BY score ASC LIMIT 5;Adaptive asynchronous inserts Asynchronous inserts shift data batching from the client side to the server side: data from insert queries is inserted into a buffer first and then written to the database storage later or asynchronously respectively.
http://www.zqtcl.cn/news/840813/

相关文章:

  • 嘉定网站设计制作报价crm系统营销
  • 一个网站做几个关键词怎么样子做网站
  • 关于做网站的创新创业策划书怎么进网站后台管理系统
  • 品牌型网站开发wap网站开发工具
  • 网站改版设计微信淘宝购物券网站是怎么做的
  • 网站建设基本流程心得网站设计开发报价
  • 泉州网站建设网站制作电商网站建设需要
  • 沈阳工程建设信息网深圳seo网站排名优化
  • wordpress仿dz长沙seo网站优化
  • 西宁做网站公司电话关键词快速排名怎么做
  • 昆山网站建设秦皇岛淘宝关键词推广
  • 建设娱乐网站的要求微网站开发多少钱
  • 海港区网站快排seo网站怎么添加流量
  • 肇庆做网站aspaccess做网站
  • 郑州网站建设索q479185700wordpress输出用户中心链接
  • 网站重要三要素网站建设 找vx cp5173
  • 河北网站开发价格三个字简洁的公司名称
  • 网站建设案例分析wordpress 页面固定
  • 杭州网站备案机械加工网站有哪些
  • 360网站运营wordpress 免费版广告
  • 龙文网站建设有域名可以自己做网站吗
  • 东莞优化网站建设肥猫网站建设
  • 东莞住房和建设局网站dedecms如何做网站
  • 广州商城网站建设地址义马网站开发
  • 全球购物网站排名高端网站定制开发设计制作
  • 软件开发专业课程有哪些seo比较好的优化
  • 重庆网站建设坤思特seo关键词报价查询
  • 重庆装修公司排名前十口碑推荐南京做网站seo
  • 佛山网站优化美姿姿seo网站策划方案 优帮云
  • 阿里巴巴国际站网站做销售方案东莞营销推广