当前位置: 首页 > news >正文

网站网页不对称仙游县建设局网站

网站网页不对称,仙游县建设局网站,长沙制作公园仿竹护栏哪家好,做微信首图的网站推理/Inferring 推理是指模型将文本作为输入并执行某种分析的任务。这可以是提取标签、提取名称、理解文本的情感等任务。 例如#xff0c;如果您想从一段文本中提取积极或消极的情感#xff0c;在传统的机器学习工作流程中#xff0c;您需要收集标签数据集、训练模型、确定…推理/Inferring 推理是指模型将文本作为输入并执行某种分析的任务。这可以是提取标签、提取名称、理解文本的情感等任务。 例如如果您想从一段文本中提取积极或消极的情感在传统的机器学习工作流程中您需要收集标签数据集、训练模型、确定如何在云中部署模型并进行推断。这需要经历大量的工作流程。而对于每个任务例如情感、提取名称等您都需要训练和部署单独的模型。 而在大型语言模型对于类似的任务只需要编写一个提示就可以立即开始生成结果。而且您可以只使用一个模型、一个API来执行许多不同的任务而不需要找出如何训练和部署许多不同的模型。 环境准备 和①指南一样需要搭建一个环境 import openai import osfrom dotenv import load_dotenv, find_dotenv _ load_dotenv(find_dotenv()) # read local .env fileopenai.api_key os.getenv(OPENAI_API_KEY)def get_completion(prompt, modelgpt-3.5-turbo):messages [{role: user, content: prompt}]response openai.ChatCompletion.create(modelmodel,messagesmessages,temperature0, # this is the degree of randomness of the models output)return response.choices[0].message[content]情感分析 以一个台灯的评价为例子。 lamp_review Needed a nice lamp for my bedroom, and this one had \ additional storage and not too high of a price point. \ Got it fast. The string to our lamp broke during the \ transit and the company happily sent over a new one. \ Came within a few days as well. It was easy to put \ together. I had a missing part, so I contacted their \ support and they very quickly got me the missing piece! \ Lumina seems to me to be a great company that cares \ about their customers and products!!让我写一个提示来分类这个评价的情感。我只需要写下“以下产品评价的情感是什么”然后加上通常的分隔符和评价文本等等。然后运行它。 prompt f What is the sentiment of the following product review, which is delimited with triple backticks?Review text: {lamp_review}response get_completion(prompt) print(response)The sentiment of the product review is positive.可以限定为只回答一个单词积极或消极。 prompt f What is the sentiment of the following product review, which is delimited with triple backticks?Give your answer as a single word, either positive \ or negative.Review text: {lamp_review}response get_completion(prompt) print(response)positive也可以让它识别出评价作者表达的情绪列表包括不超过五个项目。 prompt f Identify a list of emotions that the writer of the \ following review is expressing. Include no more than \ five items in the list. Format your answer as a list of \ lower-case words separated by commas.Review text: {lamp_review}response get_completion(prompt) print(response)happy, satisfied, grateful, impressed, content我们也可以询问是否顾客有某一个特定的情感比如愤怒 prompt f Is the writer of the following review expressing anger?\ The review is delimited with triple backticks. \ Give your answer as either yes or no.Review text: {lamp_review}response get_completion(prompt) print(response)No信息提取 信息提取是NLP自然语言处理的一部分从文本中提取您想要了解的特定信息。 在以下案例中我要求它识别以下内容商品Item和品牌Brand。 prompt f Identify the following items from the review text: Item purchased by reviewer Company that made the itemThe review is delimited with triple backticks. \ Format your response as a JSON object with \ Item and Brand as the keys. If the information isnt present, use unknown \ as the value. Make your response as short as possible.Review text: {lamp_review}response get_completion(prompt) print(response){Item: lamp,Brand: Lumina }多任务抽取一次性提取这些不同的字段下面例子编写提示来识别情绪确定某人是否生气然后提取物品和品牌。 prompt f Identify the following items from the review text: Sentiment (positive or negative) Is the reviewer expressing anger? (true or false) Item purchased by reviewer Company that made the itemThe review is delimited with triple backticks. \ Format your response as a JSON object with \ Sentiment, Anger, Item and Brand as the keys. If the information isnt present, use unknown \ as the value. Make your response as short as possible. Format the Anger value as a boolean.Review text: {lamp_review}response get_completion(prompt) print(response){Sentiment: positive,Anger: false,Item: lamp with additional storage,Brand: Lumina }推断主题 下面的例子给定一篇长文这是一篇虚构的关于政府工人对他们工作的机构感受的报纸文章。 story In a recent survey conducted by the government, public sector employees were asked to rate their level of satisfaction with the department they work at. The results revealed that NASA was the most popular department with a satisfaction rating of 95%.One NASA employee, John Smith, commented on the findings, stating, Im not surprised that NASA came out on top. Its a great place to work with amazing people and incredible opportunities. Im proud to be a part of such an innovative organization.The results were also welcomed by NASAs management team, with Director Tom Johnson stating, We are thrilled to hear that our employees are satisfied with their work at NASA. We have a talented and dedicated team who work tirelessly to achieve our goals, and its fantastic to see that their hard work is paying off.The survey also revealed that the Social Security Administration had the lowest satisfaction rating, with only 45% of employees indicating they were satisfied with their job. The government has pledged to address the concerns raised by employees in the survey and work towards improving job satisfaction across all departments.确定以下文本中正在讨论的五个主题。让我们把每个项目格式化成一个或两个单词长将您的响应格式化为逗号分隔的列表如果我们运行它可以提取了一个主题列表。 prompt f Determine five topics that are being discussed in the \ following text, which is delimited by triple backticks.Make each item one or two words long. Format your response as a list of items separated by commas.Text sample: {story}response get_completion(prompt) print(response.split(sep,))[government survey, job satisfaction, NASA, Social Security Administration, employee concerns]如果给一篇文章可以判断是否有某一些主题这是我们追踪的主题NASA当地政府工程员工满意度和联邦政府为每个主题提供0或1的答案列表。 topie_list { nasa, local govement, engineering, employee satisfaction, federal government } prompt f Determine whether each item in the following list of \ topics is a topic in the text below, which is delimited with triple backticks.Give your answer as list with 0 or 1 for each topic.\List of topics: {, .join(topic_list)}Text sample: {story}response get_completion(prompt) print(response)nasa: 1 local government: 0 engineering: 0 employee satisfaction: 1 federal government: 1如果某个主题包括NASA可以打印出“新NASA故事” topic_dict {i.split(: )[0]: int(i.split(: )[1]) for i in response.split(sep\n)} if topic_dict[nasa] 1:print(ALERT: New NASA story!)
http://www.zqtcl.cn/news/151062/

相关文章:

  • 品牌网站建设哪里好京东网站建设案例
  • 亚马逊海外版网站深圳市工商注册信息查询网站
  • 新乐做网站优化网站上漂亮的甘特图是怎么做的
  • 新网站应该怎么做seo品牌推广方案思维导图
  • 想要网站导航推广页浅谈中兴电子商务网站建设
  • 免费引流在线推广成都网站优化费用
  • 老河口市网站佛山市点精网络科技有限公司
  • word模板免费网站seo引擎优化是做什么的
  • 办网站怎么赚钱鄠邑建站 网站建设
  • 宜春网站建设推广微信小程序开发
  • 巴南城乡建设网站免费网站建设软件大全
  • 湖南网站建设公公司没有自己的网站
  • 刚建设的网站如何推广网站恢复正常
  • 怎么做制作网站的教程永久免费空间免备案
  • 网站维护运营怎么做简单的手机网址大全
  • 网站建设规划设计公司排名使用模块化的网站
  • 南宁网站seo大概多少钱门户网站建设公司渠道
  • 如何建国际商城网站海门做网站公司
  • 做网站应该画什么图注册子公司流程及所需资料
  • 嵊州市建设银行网站怎么自己做游戏软件
  • 用模板快速建站中园建设银行网站
  • 网站建设罒金手指下拉壹陆韩国最新新闻消息
  • 东莞企业网站推广技巧wordpress怎么汉化
  • 17网站一起做网店如何下单iis服务器网站301重定向怎么做
  • 网站如何做线上支付功能seo网站推广优化费用
  • 贵州灵溪seo整站优化wordpress进行不
  • 三网一体网站建设网站开发环境分析
  • 广州白云机场网站建设查询域名备案信息
  • 苗族网站建设中牟做网站
  • 潍坊网站建设建站哪个网站的课件做的好处