当前位置: 首页 > news >正文

淮安网站网站建设网站公司成本

淮安网站网站建设,网站公司成本,百度模拟点击,国外优秀的网站场的概念 | 方向导数与梯度 | 通量与散度 | 环量与旋度 | 典型矢量场 | 哈密顿算子场的概念1.场#xff1a;如果在全部空间或部分空间里的每一点#xff0c;都对应着某个物理量的一个确定的值#xff0c;即在这个空间里确定了该物理量的一个场。#xff08;数量场/矢量场 、…场的概念 | 方向导数与梯度 | 通量与散度 | 环量与旋度 | 典型矢量场 | 哈密顿算子场的概念1.场如果在全部空间或部分空间里的每一点都对应着某个物理量的一个确定的值即在这个空间里确定了该物理量的一个场。数量场/矢量场 、稳定场/不稳定场2.数量场的等值面数量场uu(M)即uu(x,y,z)由场中使函数u取相同数值的点所组成的曲面假设这个函数单值连续且具有连续一阶偏导数由隐函数存在定理各连续偏导数不全为零时这种等值面一定存在同理可定义等值线3.矢量场的矢量线每一点都与对应于该点的矢量相切的曲线在流体力学中此为流线定义 矢量线需满足的微分方程 Ax,Ay,Az为场矢量坐标分量4.矢量场矢量面对于场中任意一条曲线C非矢量线在其上每一点处有且仅有一条矢量线经过这些矢量线构成矢量面特别地当曲线C为封闭曲线时通过C的矢量面构成管型曲面矢量管5.平行平面场常见的、具有一定几何特点的场 平行平面矢量场场内所有矢量均平行于某一平面q在垂直于平面q的任一直线的所有点上矢量的大小和方向都相同 平行平面数量场垂直于场中某一直线l的所有平行平面上数量u的分布情况都是相同的 或者说在场中与直线l平行的任意一条直线的所有点上数量u都相同方向导数与梯度数量场1.方向导数设 为数量场uu(M)中的一点从点 出发引出一条射线l在l上点 的邻近取一动点M记 p若当 趋近于M时比式 的 极限存在则称此极限为函数在点 处沿l方向的方向导数记作 方向导数即为在某一个点 处沿方向l函数对距离的变化率2.在直角坐标系中若函数uu(x,y,z)在点M0(x0,y0,z0)处可微则函数u在点M0处沿l方向的偏导数必存在且其数值由如下公式给出 为方向l的方向余弦3.若在有向曲线C上取定一点 作为计算弧长s的起点并以C之正向作为s增大的方向M为C上的一点在点M处沿C之正向作一与C相切的射线l则当u在点M处可微曲线C光滑时时有 ; 为函数u在点M处沿曲线C正向的方向导数 4.梯度若在数量场u(M)中的一点处存在这样一个矢量G其方向为函数u(M)在M点处变化率最大的方向其模也正好是这个最大变化率的数值则称G为函数u(M)在点M处的梯度记作 u即 uG 梯度的定义与坐标系无关仅有分布决定5.梯度性质函数u沿l方向的方向导数等于梯度在该方向上的投影数量场u(M)中每一点M处的梯度垂直于过该点的等值面且指向函数u(M)增大的一方即等值面上任意一点处的单位法矢量n可定义为 梯度运算的基本法则和微分运算法则一致。通量与散度矢量场简单曲线没有重点的连续曲线简单曲面没有重点的连续曲面。2. 有向曲面取定外侧为正侧的曲面3. 通量设有矢量场A(M)沿其中有向曲面S某一侧的曲面积分 矢量场A向积分所沿一侧穿过曲面S的通量 若封闭曲面s通量大于零则s内存在源反之则说明s内有汇。4. 散度设有矢量场A(M)于场中一点M的某个邻域内作一包含M点的任意闭曲面 设其所包围的空间区域为 以 表示其体积以 表示从其内穿出S的通量。若当 以任意方式缩向点M时比式 极限存在则称此极限为矢量场A在点M处的散度记作 div A即 散度div A为纯量表示场中一点处通量对体积的变化率即该点处对一个单位体积来说所穿出之通量即该处源的强度div A0时矢量场A为无源场 在直角坐标系中 5. 散度运算基本法则 c为常数u为数性函数6. 通量与散度关系 7. 平面矢量场法向矢量规定其沿逆时针旋转 90度与切向矢量重合8. 平面矢量场的通量平面矢量场 中沿其中某一有向曲线 的曲线积分 对于封闭曲线总是规定逆时针方向为正向9.平面矢量场的散度设有平面矢量场 于场中一点M的某个邻域内作一包含M点在内的任一闭曲线 设其所包围平面区域为 以 表示其面积以 表示其从内穿出 的通量。若当 以任意方式缩向M点时比式 的极限存在则称此极限为矢量场A在点M处的散度。环量与旋度矢量场1. 环量沿矢量场A中某一封闭的有向曲线l的曲线积分 2. 环量面密度设M为矢量场A中一点在点M处取定一个方向n再过点M作任一微小曲面 以 为其在点M处的法矢量此曲面周界 与 构成右手螺旋关系定义 的极限为环量面密度 在直角坐标系下3. 旋度若在矢量场A中的一点M处存在这样一个矢量 矢量场A在点M处沿其方向的环量面密度为最大这个数值正好就是 则称矢量 为矢量场A在M处的旋度记 即 在直角坐标系中 4. 旋度运算法则三种重要的矢量场有势场、管形场、调和场有势场设有矢量场A(M)若存在单值函数u(M)满足 则称这个矢量场为有势场令v-u则v为这个场的势函数。 1有势场是一个梯度场有势场的势函数有无穷个它们之间只差一个常数 2在线单连域内矢量场A为有势场的充要条件时A为无旋场 3“场有势”“场无旋rot A0”“场保守场内曲线积分与路径无关”彼此等价2.管形场设有矢量场A(M)若其散度div A0则称这个矢量场为管形场即为无源场。 1 在面单连域内矢量场A为管形场的充要条件A为另一个矢量场B的旋度场即 满足条件的矢量场B称为矢量场A的矢势量。 2 设管形场A所在的空间区域为一面单连域在场中任取一个矢量管。假定 和 时它的任意两个横断面其法向量 和 都朝向矢量A所指的一侧则有 穿过同一个矢量管的所有横断面的通量都相等常数称之为矢量管的强度3. 调和场如果在矢量场A中恒有 和 称此矢量场为调和场 1势函数u为调和函数满足拉普拉斯方程 为方便表述我们引入微分算子 2平面调和场定义u为平面调和场A的力函数则u与v构成共轭调和函数哈密顿算子1.引入哈密顿算子 引入数性微分算子 2. 运算规则 即3. 奥斯特罗格拉茨基公式 4.格林公式 格林公式推广至三维即为斯托克斯公式5. 斯托克斯公式 4. 一些常见的公式c为常数 为常矢u、v为数性函数 、 为矢性函数5. 若 则 原方向上的单位矢量2019.12.19 BUAA Old Building2019.12.20 BUAA Lib2019.12.21 BUAA Dorm/Elisabeth 2001 Essen Cast Recording//Cats Original Broadway Cast Recording//Mozart Lopera Rock Complete Recording/
http://www.zqtcl.cn/news/124544/

相关文章:

  • 商城类的网站一般怎么做开发app软件的步骤
  • 招聘网站做销售怎么样做网站后台学什么专业
  • 帮别人做彩票网站餐饮网站建设需求分析
  • 企业服务平台工程建设云深圳网站建设专业乐云seo
  • 怎么建立小公司网站抖音运营推广
  • 无锡地区做网站嵌入式软硬件开发
  • 网站建设框架怎么写企业网站本身应该就是企业( )的一部分
  • 如果做公司网站WordPress出现归档
  • 温州开发网站公司阿里云 拦截网站
  • 网站建设与管理实践实践报告南宁小程序建设
  • 网站后台功能技术要求网站建设 手机和pc
  • 嘉兴住房和城乡建设厅网站仿网站被封怎么办
  • 设计君seo查询怎么查
  • 购物网站ppt怎么做网站建设的申请理由
  • 美食网站要怎么做背景墙素材高清图片免费
  • 广东专业网站优化制作公司做编辑器的网站
  • 优惠券怎做网站自己注册网站
  • 网站建设中应该返回502还是301动画短视频制作教程
  • o2o网站设计公司韩都衣舍网站建设
  • 做网站用别人的源码可以吗在线视频制作
  • 响应式网站 有哪些弊端北京网站建设怎么样
  • 轮播网站碑林微网站建设
  • 韩国网站免费观看网站建设 博客
  • 网站网商wordpress图片生成插件下载
  • seo网站营销推广桂林网站建设内容
  • 乐达淄博网站建设制作html网站开发流程
  • 赤峰网站建设flash教程网站都有哪些
  • 网站建设哪里学成品短视频app源码搭建
  • 网站可以自己做温州制作手机网站
  • 根河企业网站建设房地产如何做网站推广