当前位置: 首页 > news >正文

做网站一般几个人厦门零基础学seo

做网站一般几个人,厦门零基础学seo,重庆网站建设公司联系方式,变更icp备案网站信息TVM#xff1a;编译深度学习模型快速上手教程 本文将展示如何使用 Relay python 前端构建一个神经网络#xff0c;并使用 TVM 为 Nvidia GPU 生成一个运行时库。 注意我们需要再构建 TVM 时启用了 cuda 和 llvm。 TVM支持的硬件后端总览 在本教程中#xff0c;我们使用 cu…TVM编译深度学习模型快速上手教程 本文将展示如何使用 Relay python 前端构建一个神经网络并使用 TVM 为 Nvidia GPU 生成一个运行时库。 注意我们需要再构建 TVM 时启用了 cuda 和 llvm。 TVM支持的硬件后端总览 在本教程中我们使用 cuda 和 llvm 作为目标后端。我们先导入 Relay 和 TVM import numpy as npfrom tvm import relay from tvm.relay import testing import tvm from tvm import te from tvm.contrib import graph_executor import tvm.testing使用Relay定义一个神经网络 首先我们使用 relay 的 python 前端定义一个神经网络。简单起见我们这里直接使用 relay 中预定义好的 resnet-18 网络。参数按照 Xavier 初始化进行初始化。Relay 同样支持其他的模型格式如 MXNetCoreMLONNX 和 TensorFlow。 本教程中我们假设我们将会在自己的设备上进行推理batch size 设为1。输入是尺寸为 224 * 224 的 RGB 彩色图像。我们可以调用 tvm.relay.expr.TupleWrapper.astext() 来查看网络结构 batch_size 1 num_class 1000 image_shape (3, 224, 224) data_shape (batch_size,) image_shape out_shape (batch_size, num_class)mod, params relay.testing.resnet.get_workload(num_layers18, batch_sizebatch_size, image_shapeimage_shape )# set show_meta_dataTrue if you want to show meta data print(mod.astext(show_meta_dataFalse))输出 #[version 0.0.5] def main(%data: Tensor[(1, 3, 224, 224), float32], %bn_data_gamma: Tensor[(3), float32], %bn_data_beta: Tensor[(3), float32], %bn_data_moving_mean: Tensor[(3), float32], %bn_data_moving_var: Tensor[(3), float32], %conv0_weight: Tensor[(64, 3, 7, 7), float32], %bn0_gamma: Tensor[(64), float32], %bn0_beta: Tensor[(64), float32], %bn0_moving_mean: ... Tensor[(64), float32], %bn0_moving_var: Tensor[(64), float32], %stage1_unit1_bn1_gamma: %88 nn.dense(%87, %fc1_weight, units1000) /* tyTensor[(1, 1000), float32] */;%89 nn.bias_add(%88, %fc1_bias, axis-1) /* tyTensor[(1, 1000), float32] */;nn.softmax(%89) /* tyTensor[(1, 1000), float32] */ }编译 下一步就是使用 Relay/TVM 的流程进行编译。用户可以指定编译的优化等级。目前优化等级可以设置为 0 到 3。优化的 pass 包括算子融合预先计算排布变换等。 relay.build() 返回三个组件json 格式的执行图、目标硬件上专门为此图编译函数的 TVM 模块库以及模型的参数 blob。 在编译过程中Relay 进行图级优化TVM 进行张量级优化从而为模型推理服务提供优化的运行时模块。 我们将首先为 Nvidia GPU 编译。 relay.build() 首先在幕后进行了一些图级优化例如剪枝、融合等然后将算子即优化图的节点注册到 TVM 实现以生成 tvm.module。 为了生成模块库TVM 将首先将高层 IR 转换为指定目标后端的低层固有 IR在本例中为 CUDA。 然后生成机器代码得到模块库。 opt_level 3 target tvm.target.cuda() with tvm.transform.PassContext(opt_levelopt_level):lib relay.build(mod, target, paramsparams)输出 /home/areusch/ws/tvm3/python/tvm/target/target.py:259: UserWarning: Try specifying cuda arch by adding archsm_xx to your target.warnings.warn(Try specifying cuda arch by adding archsm_xx to your target.)运行生成的库 现在我们可以创建 graph executor 来将模块运行在 Nvidia GPU 上。 # create random input dev tvm.cuda() data np.random.uniform(-1, 1, sizedata_shape).astype(float32) # create module module graph_executor.GraphModule(lib[default](dev)) # set input and parameters module.set_input(data, data) # run module.run() # get output out module.get_output(0, tvm.nd.empty(out_shape)).numpy()# Print first 10 elements of output print(out.flatten()[0:10])输出 [0.00089283 0.00103331 0.0009094 0.00102275 0.00108751 0.001067370.00106262 0.00095838 0.00110792 0.00113151]保存 / 加载编译好的模块 我们可以将 graphlib 和 parameters 保存到文件中并在部署的场景下来加载它们。译者注这里的代码会将模型保存在临时文件中想要保存模型可以自己修改路径 # save the graph, lib and params into separate files from tvm.contrib import utilstemp utils.tempdir() path_lib temp.relpath(deploy_lib.tar) lib.export_library(path_lib) print(temp.listdir())输出 [deploy_lib.tar]# load the module back. loaded_lib tvm.runtime.load_module(path_lib) input_data tvm.nd.array(data)module graph_executor.GraphModule(loaded_lib[default](dev)) module.run(datainput_data) out_deploy module.get_output(0).numpy()# Print first 10 elements of output print(out_deploy.flatten()[0:10])# check whether the output from deployed module is consistent with original one tvm.testing.assert_allclose(out_deploy, out, atol1e-5)输出 [0.00089283 0.00103331 0.0009094 0.00102275 0.00108751 0.001067370.00106262 0.00095838 0.00110792 0.00113151]
http://www.zqtcl.cn/news/260045/

相关文章:

  • 敖汉旗网站建设网站建设班级通讯录
  • 把手机做网站服务器做网站商丘
  • 婚恋咨询网站运营做速卖通代码的网站
  • 网站建设流程有哪七步c语言做的网站有什么优缺点
  • 树在线网页制作网站邢台中北世纪城网站兼职
  • 备案网站建设方案模板怎么看网站域名
  • asp iis设置网站路径效果好网站建设哪家好
  • 河南做外贸网站的公司大连在哪个省的什么位置
  • 网站架构怎么做wordpress e-commerce themes
  • 哪些网站微信支付平台经营管理系统
  • 教育教学成果展示网站建设桂林网站开发公司
  • 唐山房产网站建设asp.net 网站压缩
  • 卫浴网站设计大型网站建设的必须条件
  • 肇庆制作企业网站seo网站建设课程
  • 没有公司自己做网站wordpress lms插件
  • 申请一个网站需要怎么做北京网络公司信息
  • 珠海市建设局网站分销系统价格多少
  • 杭州建网站企业seo营销工具
  • php旅游类网站开发wordpress 文章内
  • 企业管理外贸企业网站优化
  • 免费图纸网东莞百度快照优化排名
  • 南宁网站建设培训学校青海网站建设加q5299丶14602做词
  • 鱼台做网站多少钱wordpress pot
  • 招聘网站建设维护人员怎样自己开发一款软件
  • 上海网站制作怎么选泰安网红人物
  • 企业网站建设义乌南靖网站建设
  • 抖音电商网站建设如何制作app推广
  • 关键词的选择网站提示网站建设电销异议处理话术
  • 南京建设网站内容网站打开速度慢是否需要升级带宽
  • 内容类网站如何 流量厦门市建设局网站住房保障专栏