当前位置: 首页 > news >正文

只做网站珠海建设改革有哪些网站

只做网站,珠海建设改革有哪些网站,优惠券网站怎样做,在wordpress教程视频1.VGG简介 论文下载地址#xff1a;https://arxiv.org/pdf/1409.1556.pdf VGGNet 是由牛津大学视觉几何小组#xff08;Visual Geometry Group, VGG#xff09;提出的一种深层卷积网络结构#xff0c;他们以 7.32% 的错误率赢得了 2014 年 ILSVRC 分类任务的亚军#xff…1.VGG简介 论文下载地址https://arxiv.org/pdf/1409.1556.pdf  VGGNet 是由牛津大学视觉几何小组Visual Geometry Group, VGG提出的一种深层卷积网络结构他们以 7.32% 的错误率赢得了 2014 年 ILSVRC 分类任务的亚军冠军由 GoogLeNet 以 6.65% 的错误率夺得和 25.32% 的错误率夺得定位任务Localization的第一名GoogLeNet 错误率为 26.44%。  VGG通过vgg块的堆积VGG19最高让网络达到了16 个卷积层和 3 个全连接层共计 19 层网络池化层不带参数一般不算一层。这也导致参数量非常的多模型比较臃肿第一个全连接层占了非常大一部分 包括VGG11VGG13VGG16和VGG19性能依次提升最常用的是VGG16。 核心点 全部使用3×3步长为1的小卷积核。3×3卷积核是最小的能够表示上下左右中心的尺寸。 假设输入为5×5使用2次3×3卷积后最终得到1×1的特征图那么这个1×1的特征图的感受野为5×5。这和直接使用一个5×5卷积核得到1×1的特征图是一样的。也就是说2次3×3卷积可以代替一次5×5卷积同时2次3×3卷积的参数更少2×3×3185×525而且会经过两次激活函数进行非线性变换学习能力会更好。同样的3次3×3卷积可以替代一次7×7的卷积。 此外步长为1可以不会丢失信息 2.相同的vgg块堆叠 3.深度深且成功证明深度增加可以提高网络性能 2.VGG网络结构详解 这里以最常用的VGG16为例子。VGG11VGG13VGG19都是根据上面的表使用不同的卷积个数。 vgg_block包括若干个3×3卷积padding1stride1激活2×2池化padding0stride2,第一个卷积将通道数翻倍 3×3卷积padding1stride1output(input-32×1)/11input特征图尺寸不变2×2池化padding0stride2output(input-2)/211/2input特征图尺寸减半 1.输入层。224×224×3RGB图 2.vgg_block1 操作填充步长输入通道数输出通道数输出特征图尺寸3×3卷积11364224×224Relu激活//6464224×2243×3卷积116464224×224Relu激活//6464224×2242×2最大池化026464112×112 2.vgg_block2 操作填充步长输入通道数输出通道数输出特征图尺寸3×3卷积1164128112×112Relu激活//128128112×1123×3卷积11128128112×112Relu激活//128128112×1122×2最大池化0212812856×56 3.vgg_block3 从这个块开始卷积变成3次 操作填充步长输入通道数输出通道数输出特征图尺寸3×3卷积1112825656×56Relu激活//25625656×563×3卷积1125625656×56Relu激活//25625656×563×3卷积1125625656×56Relu激活//25625656×562×2最大池化0225625628×28 4.vgg_block4 操作填充步长输入通道数输出通道数输出特征图尺寸3×3卷积1125651228×28Relu激活//51251228×283×3卷积1151251228×28Relu激活//51251228×283×3卷积1151251228×28Relu激活//51251228×282×2最大池化0251251214×14 4.vgg_block5 操作填充步长输入通道数输出通道数输出特征图尺寸3×3卷积1151251214×14Relu激活//51251214×143×3卷积1151251214×14Relu激活//51251214×143×3卷积1151251214×14Relu激活//51251214×142×2最大池化025125127×7 6.向量化 flatten7×7×512(25,088) - 1×1×25,088 7.全连接FC1 1×1×25,088 -1×1×4096 8.全连接FC2 1×1×4096 - 1×1×4096 9.全连接FC3Softmax 1×1×4096 - 1×1×1000 3.VGGPytorch实现 3.1 手动实现VGG # 定义VGG块 def vgg_block(num_convs, in_channels, out_channels):layers [] # 初始化一个空列表用于存放层卷积层和ReLU激活函数for _ in range(num_convs): # 循环创建指定数量的卷积层和ReLU激活函数layers.append(nn.Conv2d(in_channels, out_channels, kernel_size3, padding1)) # 添加一个卷积层layers.append(nn.ReLU(inplaceTrue)) # 添加一个ReLU激活函数并在原地执行节省内存in_channels out_channels # 更新输入通道数为输出通道数以便下一层使用layers.append(nn.MaxPool2d(kernel_size2, stride2)) # 添加一个最大池化层return nn.Sequential(*layers) # 返回一个由这些层组成的Sequential模型# 定义VGG网络 class VGG(nn.Module):def __init__(self, cfg, num_classes1000):super(VGG, self).__init__()self.conv_layers self._make_layers(cfg) # 创建VGG的卷积层部分self.fc_layers nn.Sequential( # 创建VGG的全连接层部分nn.Linear(512 * 7 * 7, 4096), # 全连接层1nn.ReLU(inplaceTrue), # ReLU激活函数nn.Dropout(), # Dropout层用于防止过拟合nn.Linear(4096, 4096), # 全连接层2nn.ReLU(inplaceTrue), # ReLU激活函数nn.Dropout(), # Dropout层用于防止过拟合nn.Linear(4096, num_classes) # 全连接层3输出类别数)self.flatten nn.Flatten()def forward(self, x):x self.conv_layers(x) # 卷积层部分x self.flatten(x) # 将特征张量展平以输入全连接层x self.fc_layers(x) # 全连接层部分return xdef _make_layers(self, cfg):layers [] # 初始化一个空列表用于存放VGG的层in_channels 3 # 输入通道数为RGB图像的3通道for num_convs, out_channels in cfg:layers.append(vgg_block(num_convs, in_channels, out_channels)) # 添加VGG块in_channels out_channels # 更新输入通道数为输出通道数以便下一层使用return nn.Sequential(*layers) # 返回一个由VGG块组成的Sequential模型# 不同版本的VGG配置 cfgs {VGG11: [(1, 64), (1, 128), (2, 256), (2, 512), (2, 512)], # VGG11的卷积层配置VGG13: [(2, 64), (2, 128), (2, 256), (2, 512), (2, 512)], # VGG13的卷积层配置VGG16: [(2, 64), (2, 128), (3, 256), (3, 512), (3, 512)], # VGG16的卷积层配置VGG19: [(2, 64), (2, 128), (4, 256), (4, 512), (4, 512)] # VGG19的卷积层配置 }# 实例化不同版本的VGG def get_vgg(model_name, num_classes1000):cfg cfgs[model_name] # 获取指定版本的VGG配置model VGG(cfg, num_classes) # 根据配置创建相应版本的VGG模型return model # 返回指定版本的VGG模型# 实例化不同版本的VGG示例 # vgg11 get_vgg(VGG11) # vgg13 get_vgg(VGG13) vgg16 get_vgg(VGG16) # 修改分类数目vgg16 get_vgg(VGG16,num_classes10) # vgg19 get_vgg(VGG19)summary(vgg16.to(device), (3, 224, 224)) 3.2 手动实现VGG16简易版 还有一个简单易懂的实现方式如VGG16实现如下。但这种方式如果网络比较深代码就比较冗长了而且一次只能实现一种模型 # 定义VGG16模型结构 class VGG16(nn.Module):def __init__(self, num_classes1000):super(VGG16, self).__init__()# 特征层self.features nn.Sequential(nn.Conv2d(3, 64, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(64, 64, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),nn.Conv2d(64, 128, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(128, 128, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),nn.Conv2d(128, 256, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(256, 256, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(256, 256, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),nn.Conv2d(256, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),)self.flatten nn.Flatten()# 分类层 self.classifier nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplaceTrue),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplaceTrue),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):x self.features(x)x self.flatten(x)x self.classifier(x)return x 3.2 使用Pytorch自带的VGG 官方文档VGG — Torchvision 0.16 documentation (pytorch.org)。Pytorch官方实现了VGG并且还附带有在ImageNet上预训练权重 可以看到还有bn版本可选即在卷积后增加使用了batch-normalization批量归一化。下面是使用的示例 # 初始化预训练的vgg16模型 modelPre models.vgg16(weightsDEFAULT) summary(modelPre.to(device), (3, 224, 224)) weightsDEFAULT会默认使用最新最好的权重或者直接指明weightsIMAGENET1K_V1什么模型有什么权重可以直接去官方文档中查看就好。 除了加入了全局平均池化层之外其他和我们自己实现的是一样的。全局平均池化层可以支持任意输入尺寸无论31输出什么尺寸全部变成7×7 4.VGG在CIFAR-10简单实践  所需库 import torch import torch.nn as nn from torchsummary import summary import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data import DataLoader from tqdm import tqdm from torchvision import models import matplotlib.pyplot as plt 1.修改网络结构 CIFAR-10输入尺寸为32×32为了适应该数据集需要简单修改一下第一层全连接层的输入参数。根据网络结构尺寸会减半5次对于224×224来说会降到7则会降低到1。 将nn.Linear(512 * 7 * 7, 4096)修改为nn.Linear(512 * 1 * 1, 4096) # 定义VGG16模型结构 class VGG16(nn.Module):def __init__(self, num_classes1000):super(VGG16, self).__init__()# 特征层self.features nn.Sequential(nn.Conv2d(3, 64, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(64, 64, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),nn.Conv2d(64, 128, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(128, 128, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),nn.Conv2d(128, 256, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(256, 256, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(256, 256, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),nn.Conv2d(256, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.Conv2d(512, 512, kernel_size3, padding1),nn.ReLU(inplaceTrue),nn.MaxPool2d(kernel_size2, stride2),)self.flatten nn.Flatten()# 分类层 self.classifier nn.Sequential(#nn.Linear(512 * 7 * 7, 4096),nn.Linear(512 * 1 * 1, 4096),nn.ReLU(inplaceTrue),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplaceTrue),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):x self.features(x)x self.flatten(x)x self.classifier(x)return x# 打印模型结构 model VGG16(num_classes10).to(device) summary(model, (3, 32, 32)) 2.读取数据集 # 数据预处理 transform transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ])# 加载CIFAR-10数据集 train_dataset datasets.CIFAR10(root./dataset, trainTrue, downloadTrue, transformtransform) test_dataset datasets.CIFAR10(root./dataset, trainFalse, downloadTrue, transformtransform)# 数据加载器 train_dataloader DataLoader(train_dataset, batch_size128, shuffleTrue) test_dataloader DataLoader(test_dataset, batch_size128, shuffleFalse) 3.使用GPU device cuda if torch.cuda.is_available() else cpu 4.模型训练 def train(model, lr, epochs, train_dataloader, device, save_path):# 将模型放入GPUmodel model.to(device)# 使用交叉熵损失函数loss_fn nn.CrossEntropyLoss().to(device)# SGDoptimizer torch.optim.SGD(model.parameters(), lrlr, weight_decay5e-4, momentum0.9)# 记录训练与验证数据train_losses []train_accuracies []# 开始迭代 for epoch in range(epochs): # 切换训练模式model.train() # 记录变量train_loss 0.0correct_train 0total_train 0# 读取训练数据并使用 tqdm 显示进度条for i, (inputs, targets) in tqdm(enumerate(train_dataloader), totallen(train_dataloader), descfEpoch {epoch1}/{epochs}, unitbatch):# 训练数据移入GPUinputs inputs.to(device)targets targets.to(device)# 模型预测outputs model(inputs)# 计算损失loss loss_fn(outputs, targets)# 梯度清零optimizer.zero_grad()# 反向传播loss.backward()# 使用优化器优化参数optimizer.step()# 记录损失train_loss loss.item()# 计算训练正确个数_, predicted torch.max(outputs, 1)total_train targets.size(0)correct_train (predicted targets).sum().item()# 计算训练正确率并记录train_loss / len(train_dataloader)train_accuracy correct_train / total_traintrain_losses.append(train_loss)train_accuracies.append(train_accuracy)# 输出训练信息print(fEpoch [{epoch 1}/{epochs}] - Train Loss: {train_loss:.4f}, Train Acc: {train_accuracy:.4f})# 绘制损失和正确率曲线plt.figure(figsize(10, 5))plt.subplot(1, 2, 1)plt.plot(range(epochs), train_losses, labelTraining Loss)plt.xlabel(Epoch)plt.ylabel(Loss)plt.legend()plt.subplot(1, 2, 2)plt.plot(range(epochs), train_accuracies, labelAccuracy)plt.xlabel(Epoch)plt.ylabel(Accuracy)plt.legend()plt.tight_layout()plt.show()torch.save(model.state_dict(), save_path) model VGG16(num_classes10) lr 0.01 epochs 10 save_path ./modelWeight/VGG16_CIFAR10 train(model,lr,epochs,train_dataloader,device,save_path)
http://www.zqtcl.cn/news/588169/

相关文章:

  • 网站的设计步骤做网站的虚拟机怎么用
  • 游戏的网站做普通网站多少钱
  • 单位门户网站建设苏州吴中区做网站公司
  • 新网站内部优化怎么做家电网站建设
  • 怎么看网站源码用什么做的wordpress 六亩填
  • 网站建设实习报告范文闵行区邮编
  • h5网站模板免费下载怎样制作专业简历
  • php网站语言切换功能如何做263邮箱入口
  • 电商网站及企业微信订烟专门做红酒的网站
  • 大庆商城网站建设微网站建设找哪家
  • 渝快办官网seo管理平台
  • 网站建设辶金手指排名十二厦门建设局
  • 网站反链接什么seo推广优化多少钱
  • 建设工程公司采购的网站找不到网站后台怎么办
  • 江门网站seo推广湖南省建设银行网站官网
  • 网站底部关键词指向网站打开速度慢跟什么有关系
  • 网站右侧广告合肥高端网站设计
  • 漯河市郾城区网站建设wordpress文件管理
  • 网站栅格大连做网站的
  • 珠海企业网站建设报价鄂州网吧什么时候恢复营业
  • 手机制作钓鱼网站id转换为wordpress
  • 手机网站 好处信用中国 网站有那个部门支持建设
  • 模板免费网站自己如何做网站优化
  • 自适应网站做mip改造淘宝上买衣服的网站
  • 射阳做企业网站哪家好利用新冠消灭老年人
  • 网站头部修改wordpress php幻灯片代码
  • 网络违法犯罪举报网站哪里有制作网站服务
  • 临沂怎么做网站网站 单页
  • 科技信息网站系统建设方案建筑设计专业世界大学排名
  • 做网站运营的简历小型视频网站建设