当前位置: 首页 > news >正文

合肥做网站公司有哪些公司网站建设内部调查

合肥做网站公司有哪些,公司网站建设内部调查,营销型网站需要注意,wordpress安装502我有一个带有多个速度值的熊猫数据帧#xff0c;这些速度值是连续移动的值#xff0c;但它是一个传感器数据#xff0c;因此我们经常在中间出现误差的情况下#xff0c;移动平均值似乎也无济于事#xff0c;所以我可以采用什么方法用于从数据中删除这些离群值或峰点#…我有一个带有多个速度值的熊猫数据帧这些速度值是连续移动的值但它是一个传感器数据因此我们经常在中间出现误差的情况下移动平均值似乎也无济于事所以我可以采用什么方法用于从数据中删除这些离群值或峰点 例 data points{0.5,0.5,0.7,0.6,0.5,0.7,0.5,0.4,0.6,4,0.5,0.5,4,5,6,0.4,0.7,0.8,0.9} 在此数据中如果我看到点4、4、5、6完全是离群值那么在我使用具有5分钟窗框的滚动平均值来平滑这些值之前但仍然得到了这些类型的亮点我想删除它有人可以建议我采取任何技术摆脱这些问题。 我有一张图片可以更清晰地查看数据 如果您在此处看到数据如何显示一些必须删除的离群点有什么想法摆脱这些问题的可能方法是什么 解决方案 I really think z-score using scipy.stats.zscore() is the way to go here. Have a look at the related issue in this post. There they are focusing on which method to use before removing potential outliers. As I see it, your challenge is a bit simpler, since judging by the data provided, it would be pretty straight forward to identify potential outliers without having to transform the data. Below is a code snippet that does just that. Just remember though, that what does and does not look like outliers will depend entirely on your dataset. And after removing some outliers, what has not looked like an outlier before, suddenly will do so now. Have a look: importmatplotlib.pyplotaspltimportpandasaspdimportnumpyasnpfromscipyimportstats# your data (as a list)data[0.5,0.5,0.7,0.6,0.5,0.7,0.5,0.4,0.6,4,0.5,0.5,4,5,6,0.4,0.7,0.8,0.9]# initial plotdf1pd.DataFrame(datadata)df1.columns[data]df1.plot(styleo)# Function to identify and remove outliersdefoutliers(df,level):# 1. temporary dataframedfdf1.copy(deepTrue)# 2. Select a level for a Z-score to identify and remove outliersdf_Zdf[(np.abs(stats.zscore(df)) Originial data:Test run 1 : Z-score 4:As you can see, no data has been removed because the level was set too high. Test run 2 : Z-score 2:Now were getting somewhere. Two outliers have been removed, but there is still some dubious data left. Test run 3 : Z-score 1.2:This is looking really good. The remaining data now seems to be a bit more evenly distributed than before. But now the data point highlighted by the original datapoint is starting to look a bit like a potential outlier. So where to stop? Thats going to be entirely up to you! EDIT: Heres the whole thing for an easy copypaste: importmatplotlib.pyplotaspltimportpandasaspdimportnumpyasnpfromscipyimportstats# your data (as a list)data[0.5,0.5,0.7,0.6,0.5,0.7,0.5,0.4,0.6,4,0.5,0.5,4,5,6,0.4,0.7,0.8,0.9]# initial plotdf1pd.DataFrame(datadata)df1.columns[data]df1.plot(styleo)# Function to identify and remove outliersdefoutliers(df,level):# 1. temporary dataframedfdf1.copy(deepTrue)# 2. Select a level for a Z-score to identify and remove outliersdf_Zdf[(np.abs(stats.zscore(df))
http://www.zqtcl.cn/news/935896/

相关文章:

  • ip138查询网站网址域名ip网站外包制作
  • 网站建设需求怎么写网站seo快速排名优化
  • 网站后台文章添加成功 不显示注册安全工程师是干什么的
  • 网页制作网站建设百度网站推广费用多少钱
  • 长沙网站建设软件wordpress加菜单
  • 网站建设教育板块wordpress $pagenow
  • 岳阳手机网站建设自己可以给公司做网站吗
  • 旅游网站建设目的关于建设网站的需求分析
  • 手机可以建立网站吗自己造网站
  • 厦门建网站哪家好手机编程网站
  • 网站搭建后台奥门网站建设
  • 电子商务网站免费模板展示型网站与营销型网站
  • 除了红动中国还有哪些设计网站宁波建网站哪家
  • 网站的建设费用预算策划书wdcp网站备份
  • 济南制作公司网站网站设计的实例
  • 网站建设需要的文案一个网站的后台怎么做
  • 电影网站建设模板营销方式都有哪些
  • 书店商城网站建设方案未央免费做网站
  • 北京房产网北京二手房企业网站seo方案案例
  • 大连品牌官网建站二级建造师最好的网站
  • python开发工具搜索引擎优化的英语简称
  • 做产品代理上哪个网站好东莞公司网上推广
  • 专业制作网站公司上海广告公司联系方式
  • 古交市网站建设公司四川省建设厅电子政务网站
  • 清河网站建设费用50万做网站
  • 怎么找网站的根目录平台类网站营销方案
  • 网站关键词 价格生成山西建设工程备案网站
  • 网站开发入哪个会计科目设计师自己的网站
  • php做网站界面代码定制网页设计报价
  • 重庆智能模板建站wordpress+widget+开发