怎样建网站域名,营销型网站重要性,07073游戏网官网,春节彩灯制作公司文章目录 1 矩阵加减和数乘2 矩阵与矩阵的乘法2.1 相乘条件#xff1a;看中间#xff0c;取两头2.2 相乘计算方法 3 矩阵的幂3.1 观察归纳法3.2 邻项相消法3.3 化为对角 4 判断是否可逆#xff08;证明题或者要求求出逆矩阵#xff09;4.1 直接观察4.2 由定义式推得4.2.1 待… 文章目录 1 矩阵加减和数乘2 矩阵与矩阵的乘法2.1 相乘条件看中间取两头2.2 相乘计算方法 3 矩阵的幂3.1 观察归纳法3.2 邻项相消法3.3 化为对角 4 判断是否可逆证明题或者要求求出逆矩阵4.1 直接观察4.2 由定义式推得4.2.1 待定系数—解方程4.2.2 等价替换4.2.3 因式分解 4.3 由性质推得4.4 由矩阵行列式4.5 阵的秩方阵满秩可逆不满秩是不可逆的 5. 逆的性质以及求逆的方法5.1 各自可逆则乘积可逆。5.2 初等变换法5.3 伴随矩阵法5.4 定义式法 6 逆的应用6.1 方程组 7 矩阵转置7.1 与行列式相联系方阵7.2 正交矩阵7.3 对称矩阵判别 《线性代数》中会有较多陌生的概念如矩阵的逆线性相关线性无关等具有一定的难度。因而本系列尽量会以不同于课本的视角去学习线性代数有些可以做类比记忆的我们会去做一些类比记忆比如矩阵的逆类比于我们数的除法有一些比如线性相关和无关会尽量以几何的方式直观地让大家去了解相关的内容。 《线性代数》系列重点总结线性代数相关的一些学科思想重点方法鉴于时间等各方面原因对于基础的概念并不会重点阐释与总结有基础概念不了解的比如同型矩阵去翻阅课本课本上一定有详细的定义。所以本系列适合于初步预习之后的阅读或者在正式学习之时难点知识的参考或者在总复习之时整理相关题型方法建立学科体系的阅读。
例题很重要建议自己先尝试做一遍再去看答案。同时自己在做题过程中遇到不会的要看看是否是下面的一些方法未掌握或者是这些方法的综合应用把自己不会的题总结到笔记本中做一定的标记。
加油希望你有所收获
矩阵的运算其实类比于我们数的运算无非也就是加减乘除。只不过在矩阵的运算中会有更多的条件限制比如矩阵的加减必须为同型矩阵交换律在矩阵乘法中不满足等等。但也有很多相似的地方比如矩阵的逆也就是我们数的除法当矩阵行列式为零时矩阵不可逆我们也可以联想到数如果为零的话是不能除的。
1 矩阵加减和数乘
矩阵的加减和数乘细心即可只需要注意以下两点
1矩阵的加减必须为同型矩阵行和列数要相同
2矩阵的数乘要区分于行列式的数乘kA是给矩阵中的每一个元素都乘以k而k|A|是给行列式的某一行列乘k
2 矩阵与矩阵的乘法
2.1 相乘条件看中间取两头
两个矩阵的行列数顺次排列构成四个数 a1、a2、a3、a4只有a2a3才能相乘乘出来的矩阵行列分别为a1和a4 。因而我们称为看中间取两头。好比两个朋友见面先要对个暗号只有暗号相符中间两个数相等才可以计算
例1.1
A 3 ∗ 5 ∗ B 4 ∗ 5 A_{3*5}*B_{4*5} A3∗5∗B4∗5
a13 a25 a34 a45 因而不能相乘
例1.2
A 3 ∗ 4 ∗ B 4 ∗ 5 C 3 ∗ 5 A_{3*4}*B_{4*5}C_{3*5} A3∗4∗B4∗5C3∗5
可以相乘得到的矩阵行列分别为3和5
2.2 相乘计算方法
第一个矩阵的每一行分别去乘第二个矩阵的每一列并相加并无难点熟悉计算即可。
3 矩阵的幂
3.1 观察归纳法
归纳法使用于二阶三阶阶数较小的情况或者虽然阶数较高但零比较多。我们可以先尝试写出二次方三次方观察规律推测结果。
例1.1设 A ( 1 0 2 1 ) A\begin{pmatrix}10\\21\end{pmatrix} A(1201) 求 A n A^n An
解 A 2 ( 1 0 4 1 ) A^2\begin{pmatrix}10\\41\end{pmatrix} A2(1401) A 3 ( 1 0 6 1 ) A^3\begin{pmatrix}10\\61\end{pmatrix} A3(1601) 我们可以推测 A n ( 1 0 2 n 1 ) A^n\begin{pmatrix}10\\2n1\end{pmatrix} An(12n01)
如果是填空题直接写答案即可如果是大题还需要进行验证
猜想 A n ( 1 0 2 n 1 ) A^n\begin{pmatrix}10\\2n1\end{pmatrix} An(12n01) n1 时成立 当n1 时设公式对于n-1成立则 A n A n − 1 A ( 1 0 2 ( n − 1 ) 1 ) ( 1 0 2 1 ) ( 1 0 2 n 1 ) A^nA^{n-1}A\begin{pmatrix}10\\2(n-1)1\end{pmatrix}\begin{pmatrix}10\\21\end{pmatrix}\begin{pmatrix}10\\2n1\end{pmatrix} AnAn−1A(12(n−1)01)(1201)(12n01)
猜想正确
3.2 邻项相消法
临项相消法使用于AB矩阵乘积形式如果BA简单易求结果为对角矩阵或者是一个常数或者由题目已知则可以先算BA 即 ( A B ) n A B A B . . . A B A ( B A ) ( B A ) . . . B (AB)^nABAB...ABA(BA)(BA)...B (AB)nABAB...ABA(BA)(BA)...B
例1.2 : 设 A ( 1 1 1 ) A\begin{pmatrix}1\\1\\1\end{pmatrix} A 111 B ( 1 2 3 ) B\begin{pmatrix}123\end{pmatrix} B(123) 求 ( A B ) 10 (AB)^{10} (AB)10 A B ( 1 2 3 1 2 3 1 2 3 ) AB\begin{pmatrix}123\\123\\123\end{pmatrix} AB 111222333 BA6 我们发现BA比AB更容易求,则我们优先计算BA
则我们 ( A B ) 10 A B A B . . . A B A ( B A ) B A . . B 6 9 A B 6 9 ( 1 2 3 1 2 3 1 2 3 ) (AB)^{10}ABAB...ABA(BA)BA..B6^9AB6^9\begin{pmatrix}123\\123\\123\end{pmatrix} (AB)10ABAB...ABA(BA)BA..B69AB69 111222333 $
3.3 化为对角
这是我们第5章矩阵对角化的重要应用放在这里只是为了提醒大家有这一种方法在综合大题中这种化为对角的方法应用还是蛮多的。化为对角矩阵为什么可行因为对角矩阵相乘直接对角线上对应元素相乘即可
例 A可对角化为对角矩阵B ( 5 0 0 0 − 1 0 0 0 − 1 ) \begin{pmatrix}500\\0-10\\00-1\end{pmatrix} 5000−1000−1 则有 P − 1 A P B P^{-1}APB P−1APB 则 A P B P − 1 APBP^{-1} APBP−1
A k P B P − 1 P B P − 1 . . . P B P − 1 P B k P − 1 A^kPBP^{-1}PBP^{-1}...PBP^{-1}PB^kP^{-1} AkPBP−1PBP−1...PBP−1PBkP−1 而 B k ( 5 k 0 0 0 ( − 1 ) k 0 0 0 ( − 1 ) K ) B^k\begin{pmatrix}5^k00\\0(-1)^k0\\00(-1)^K\end{pmatrix} Bk 5k000(−1)k000(−1)K 进而求得A的k次方
接下来就是矩阵的逆运算了
也就是矩阵的除法涉及到判断是否可逆逆的性质逆的应用等等
4 判断是否可逆证明题或者要求求出逆矩阵
4.1 直接观察
某一行或某一列为零的不可逆
如果为二阶矩阵可以利用公式直接判断并计算逆矩阵
4.2 由定义式推得
如果A×BE 则A的逆为B 有时候需要凑定义式本质上就是转换为乘积的形式而这其中的技巧性又很强常见的技巧如下抓住核心转换为乘积形式。K P30 例1.18
4.2.1 待定系数—解方程 例1.1 设AC分别为m和n阶矩阵求证矩阵M ( O A C B ) \begin{pmatrix}OA\\CB\end{pmatrix} (OCAB) 可逆并求其逆矩阵。 解 4.2.2 等价替换
有时候可以直接从式子中得到我们要求的量的等价关系 例1.2 设方阵A满足 A 2 − 4 A − E 0 A^2-4A-E0 A2−4A−E0,证明A以及4AE是可逆的并求各自的逆矩阵 解 A 2 − 4 A E A^2-4AE A2−4AE 即 A A − 4 E E AA-4EE AA−4EE 所以 A − 1 A − 4 E A^{-1}A-4E A−1A−4E 由原式可知 4 A E A 2 4AEA^2 4AEA2 则有 4 A E − 1 ( A 2 ) − 1 4AE^{-1}(A^{2})^{-1} 4AE−1(A2)−1 ( A − 1 ) 2 (A^{-1})^{2} (A−1)2 ( A − 4 E ) 2 (A-4E)^2 (A−4E)2 此题中我们可以得到要求的4AE的逆相当于求A平方的逆进而转换为我们要求的量 4.2.3 因式分解
如果我们有 A 2 − 3 A − 4 E E A^2-3A-4EE A2−3A−4EE 求AE的逆我们可以很轻松的想到 ( A − 4 E ) ( A E ) E (A-4E)(AE)E (A−4E)(AE)E,自然我们也可以求得AE的逆
那如果我们把E进行一个变化如都移在右边或者在加减E这时候求法依然一样。 例1.3 设A为n阶矩阵设 A 2 A A^2A A2A,证明 ( A E ) − 1 (AE)^{-1} (AE)−1可逆并求逆矩阵 解 A 2 − A − 2 E − 2 E A^2-A-2E-2E A2−A−2E−2E ( A − 2 E ) ( A E ) − 2 E (A-2E)(AE)-2E (A−2E)(AE)−2E − 1 2 ( A − 2 E ) ( A E ) E -\frac{1}{2}(A-2E)(AE)E −21(A−2E)(AE)E 自然可以求得我们要求的答案为 − 1 2 ( A − 2 E ) -\frac{1}{2}(A-2E) −21(A−2E) 4.3 由性质推得
如果同阶方阵A1,A2…An 可逆则我们可以知道A1 * A2 * … *An 可逆 例1.4 设AB是同阶可逆方阵且AB也可逆证明 A − 1 B − 1 A^{-1}B^{-1} A−1B−1可逆并求出逆矩阵 解 A − 1 B − 1 A − 1 B B − 1 ( A − 1 A ) B − 1 A − 1 ( A B ) B − 1 A^{-1}B^{-1}A^{-1}BB^{-1}(A^{-1}A)B^{-1}A^{-1}(AB)B^{-1} A−1B−1A−1BB−1(A−1A)B−1A−1(AB)B−1 因为AB和 A − 1 A^{-1} A−1和 B − 1 B^{-1} B−1分别可逆则原式可逆 4.4 由矩阵行列式
我们在数的除法中零是不能做除数的那么类比行列式行列式为零的时候是不可逆的。 例1.5 设n阶方阵B可逆方阵A满足 A 2 − A B A^2-AB A2−AB证明A可逆并求其逆矩阵‘ 解因为B可逆所以 |B|≠0 |B| |A||A-E| 所以|A|≠0 所以A可逆 4.5 阵的秩方阵满秩可逆不满秩是不可逆的
5. 逆的性质以及求逆的方法
5.1 各自可逆则乘积可逆。
即如果 A 1 , A 2 , . . . , A s A_1,A_2, ... ,A_s A1,A2,...,As 可逆那么乘积 A 1 A 2 . . . A s A_1A_2 ... A_s A1A2...As 可逆且 A 1 A 2 . . . A s − 1 A s − 1 . . . A 2 − 1 A 1 − 1 A_1A_2 ... A_s^{-1}A_s^{-1}...A_2^{-1}A_1^{-1} A1A2...As−1As−1...A2−1A1−1
例1.4 用到了这个性质
注意如果 ( A B ) − 1 (AB)^{-1} (AB)−1不等于 A − 1 B − 1 A^{-1}B^{-1} A−1B−1 我记得我最开始学习的时候很容易犯这个错误其实本质上是和转置混淆了如果转置的话是成立的 ( A B ) T (AB)^{T} (AB)T A T B T A^{T}B^{T} ATBT
5.2 初等变换法
初等变换是我们求逆的最常用的方法我们熟悉的
例1.1 设AC分别为m和n阶矩阵求证矩阵M ( O A C B ) \begin{pmatrix}OA\\CB\end{pmatrix} (OCAB) 可逆并求其逆矩阵。 5.3 伴随矩阵法
AA*|A|E
5.4 定义式法
同上判断可逆时如果ABE 则不仅可以判断A可逆也可以直接得出A的逆为B
6 逆的应用
6.1 方程组
就是将我们的方程组求解转换为两个矩阵相乘前提是A的逆好求或已知否则的话我们还是运用后面的求方程组的方法
A x B AxB AxB 则 $ xA^{-1}B$
7 矩阵转置
7.1 与行列式相联系方阵
转置行列式值不变
7.2 正交矩阵
正交矩阵的转置等于矩阵的逆
7.3 对称矩阵判别
对称矩阵的情况下 A T A A^TA ATA
例1.1 证明 A T A A^TA ATA和 A A T AA^T AAT为对称矩阵
补充题库
四-1.2.1 K P31 B 5T
四-1.2.1 K P30 例1.18