专业企业网站建设公司,拖拽式制作网站可以做会员吗,营销型网站建设推来客网络,垂直电商网站建设方案文章目录 Pinsker’s inequalityKullback-Leibler (KL) divergenceKL散度在matlab中的计算 KL散度在隐蔽通信概率推导中的应用 Pinsker’s inequality
Pinsker’s Inequality是信息论中的一个不等式#xff0c;通常用于量化两个概率分布之间的差异。这个不等式是由苏联数学家… 文章目录 Pinsker’s inequalityKullback-Leibler (KL) divergenceKL散度在matlab中的计算 KL散度在隐蔽通信概率推导中的应用 Pinsker’s inequality
Pinsker’s Inequality是信息论中的一个不等式通常用于量化两个概率分布之间的差异。这个不等式是由苏联数学家Mark Pinsker于1964年提出的。
考虑两个概率分布 (P) 和 (Q) 在同一样本空间上的概率密度函数Pinsker’s Inequality可以表示为
[ D KL ( P ∥ Q ) ≥ 1 2 ( ∫ ( p ( x ) − q ( x ) ) 2 d x ) 2 D_{\text{KL}}(P \parallel Q) \geq \frac{1}{2} \left(\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \, dx\right)^2 DKL(P∥Q)≥21(∫(p(x) −q(x) )2dx)2 ]
其中
( D KL ( P ∥ Q ) D_{\text{KL}}(P \parallel Q) DKL(P∥Q)) 是P和Q之间的 K u l l b a c k − L e i b l e r Kullback-Leibler Kullback−Leibler散度表示两个概率分布之间的差异。( p ( x ) p(x) p(x)) 和 ( q ( x ) q(x) q(x)) 分别是P和Q在样本点 ( x x x) 处的概率密度函数。
Pinsker’s Inequality表明KL散度的平方根下界是两个概率分布在L2范数平方积分的平方根上的差异。这个不等式在信息论和统计学中有广泛的应用用于量化概率分布之间的距离。
Kullback-Leibler (KL) divergence
KL散度Kullback-Leibler散度也称为相对熵是一种用于衡量两个概率分布之间差异的指标。给定两个概率分布 ( P P P) 和 ( Q Q Q)KL散度的定义如下
[ D KL ( P ∥ Q ) ∫ P ( x ) log ( P ( x ) Q ( x ) ) d x D_{\text{KL}}(P \parallel Q) \int P(x) \log\left(\frac{P(x)}{Q(x)}\right) \,dx DKL(P∥Q)∫P(x)log(Q(x)P(x))dx ]
这个积分表示在样本空间上对 (P) 的每个事件的概率进行加权权重是 ( P P P) 对应事件的概率然后乘以 ( P P P) 和 ( Q Q Q) 概率比的自然对数。
KL散度有一些重要的性质
非负性( D KL ( P ∥ Q ) ≥ 0 D_{\text{KL}}(P \parallel Q) \geq 0 DKL(P∥Q)≥0)等号成立当且仅当 ( P P P) 和 ( Q Q Q) 在所有点上都相等。不对称性一般情况下( D KL ( P ∥ Q ) ≠ D KL ( Q ∥ P ) D_{\text{KL}}(P \parallel Q) \neq D_{\text{KL}}(Q \parallel P) DKL(P∥Q)DKL(Q∥P))。它衡量了从 ( Q Q Q) 到 ( P P P) 的信息损失和从 ( P P P) 到 ( Q Q Q) 的信息损失是不同的。不满足三角不等式( D KL ( P ∥ R ) ≰ D KL ( P ∥ Q ) D KL ( Q ∥ R ) D_{\text{KL}}(P \parallel R) \nleq D_{\text{KL}}(P \parallel Q) D_{\text{KL}}(Q \parallel R) DKL(P∥R)≰DKL(P∥Q)DKL(Q∥R))。这意味着KL散度不满足三角不等式因此不能被解释为标准的距离度量。
KL散度的应用广泛包括在信息论、统计学、机器学习等领域例如在变分推断、最大似然估计和生成模型中。
KL散度在matlab中的计算
KLKullback-Leibler散度是衡量两个概率分布之间差异的一种方法。在Matlab中你可以使用kldiv函数来计算两个概率分布的KL散度。这个函数通常包含在Statistics and Machine Learning Toolbox中因此你需要确保你的Matlab版本中包含了这个工具箱。
以下是一个简单的示例演示如何使用kldiv函数计算两个离散概率分布之间的KL散度
% 定义两个离散概率分布
P [0.3, 0.4, 0.3]; % 第一个分布
Q [0.5, 0.2, 0.3]; % 第二个分布% 计算KL散度
kl_divergence kldiv(P, Q);% 显示结果
disp([KL散度, num2str(kl_divergence)]);请确保你的Matlab环境中已经安装了Statistics and Machine Learning Toolbox以便使用kldiv函数。如果没有安装你可以通过MathWorks官方网站获取该工具箱或者使用其他方法计算KL散度例如手动实现KL散度的计算公式。
KL散度在隐蔽通信概率推导中的应用
Robust Beamfocusing for FDA-Aided Near-Field Covert Communications With Uncertain Location 2023 IEEE ICC
Let ( D w , θ w ) \left(D_{\mathrm{w}}, \theta_{\mathrm{w}}\right) (Dw,θw) denote the location of Willie. We assume Willie is synchronized with Alice with the full knowledge of the carrier frequencies, and the channel vector h H ( D w , θ w ) \mathbf{h}^{H}\left(D_{\mathrm{w}}, \theta_{\mathrm{w}}\right) hH(Dw,θw) . This is the worst case for legitimate nodes to analyze the lower bound of covert communications performance. The hypothesis test at Willie is given by { H 0 : y w ( n ) z w ( n ) , H 1 : y w ( n ) h w H w s ( n ) z w ( n ) , \left\{\begin{array}{l} \mathcal{H}_{0}: y_{\mathrm{w}}^{(n)}z_{\mathrm{w}}^{(n)}, \\ \mathcal{H}_{1}: y_{\mathrm{w}}^{(n)}\mathbf{h}_{\mathrm{w}}^{H} \mathbf{w} s^{(n)}z_{\mathrm{w}}^{(n)}, \end{array}\right. {H0:yw(n)zw(n),H1:yw(n)hwHws(n)zw(n),
where h w H \mathbf{h}_{\mathrm{w}}^{H} hwH is short for h H ( D w , θ w ) \mathbf{h}^{H}\left(D_{\mathrm{w}}, \theta_{\mathrm{w}}\right) hH(Dw,θw) , and z w ( n ) ∼ C N ( 0 , σ w 2 ) z_{\mathrm{w}}^{(n)} \sim \mathcal{C N}\left(0, \sigma_{\mathrm{w}}^{2}\right) zw(n)∼CN(0,σw2) is the AWGN at Willie with noise power σ w 2 \sigma_{\mathrm{w}}^{2} σw2 . From (5), the probability distribution functions (PDFs) of y w [ y w ( 1 ) , y w ( 2 ) , … , y w ( N ) ] T \mathbf{y}_{\mathrm{w}} \left[y_{\mathrm{w}}^{(1)}, y_{\mathrm{w}}^{(2)}, \ldots, y_{\mathrm{w}}^{(N)}\right]^{T} yw[yw(1),yw(2),…,yw(N)]T under H 0 \mathcal{H}_{0} H0 and H 1 \mathcal{H}_{1} H1 can be derived as P 0 ≜ P ( y w ∣ H 0 ) 1 π N σ w 2 N e − y w H y w σ w 2 (6) \mathbb{P}_{0} \triangleq \mathbb{P}\left(\mathbf{y}_{\mathrm{w}} \mid \mathcal{H}_{0}\right)\frac{1}{\pi^{N} \sigma_{\mathrm{w}}^{2 N}} e^{-\frac{\mathbf{y}_{\mathrm{w}}^{H} \mathbf{y}_{\mathrm{w}}}{\sigma_{\mathrm{w}}^{2}}} \tag{6} P0≜P(yw∣H0)πNσw2N1e−σw2ywHyw(6)
and P 1 ≜ P ( y w ∣ H 1 ) 1 π N ( ∣ h w H w ∣ 2 σ w 2 ) N e − y w H y w ∣ h w H ∣ 2 σ w 2 (7) \mathbb{P}_{1} \triangleq \mathbb{P}\left(\mathbf{y}_{\mathrm{w}} \mid \mathcal{H}_{1}\right)\frac{1}{\pi^{N}\left(\left|\mathbf{h}_{\mathrm{w}}^{H} \mathbf{w}\right|^{2}\sigma_{\mathrm{w}}^{2}\right)^{N}} e^{-\frac{\mathbf{y}_{\mathrm{w}}^{H} \mathbf{y}_{\mathrm{w}}}{\left|\mathbf{h}_{\mathrm{w}}^{H}\right|^{2}\sigma_{\mathrm{w}}^{2}}} \tag{7} P1≜P(yw∣H1)πN(∣hwHw∣2σw2)N1e−∣hwH∣2σw2ywHyw(7)
respectively. Let D 0 \mathcal{D}_{0} D0 and D 1 \mathcal{D}_{1} D1 denote the decisions in favor of H 0 \mathcal{H}_{0} H0 and H 1 \mathcal{H}_{1} H1 , respectively. The false alarm and missed detection probabilities are defined as P F A ≜ P ( D 1 ∣ H 0 ) \mathbb{P}_{F A} \triangleq \mathbb{P}\left(\mathcal{D}_{1} \mid \mathcal{H}_{0}\right) PFA≜P(D1∣H0) and P M D ≜ P ( D 0 ∣ H 1 ) \mathbb{P}_{M D} \triangleq \mathbb{P}\left(\mathcal{D}_{0} \mid \mathcal{H}_{1}\right) PMD≜P(D0∣H1) , respectively. The detection performance of Willie is characterized by the sum of the detection error probabilities ξ P F A P M D \xi\mathbb{P}_{F A}\mathbb{P}_{M D} ξPFAPMD . Under the optimal detection, ξ \xi ξ is minimized, which is denoted by ξ ∗ \xi^{*} ξ∗ . Then the covertness constraint of the system is expressed as ξ ∗ ≜ P F A P M D ≥ 1 − ϵ \xi^{*} \triangleq \mathbb{P}_{F A}\mathbb{P}_{M D} \geq 1-\epsilon ξ∗≜PFAPMD≥1−ϵ , where ϵ ∈ [ 0 , 1 ] \epsilon \in[0,1] ϵ∈[0,1] is an arbitrarily small positive constant indicating the level of covertness. Smaller \epsilon corresponds to stricter covertness requirement. Specially, when ϵ 0 \epsilon0 ϵ0 , we have ξ ∗ 1 \xi^{*}1 ξ∗1 , which renders Willie’s detection to a blind guess. Moreover, according to Pinsker’s inequality [14], [15], we have ξ ∗ ≥ 1 − D ( P 1 ∥ P 0 ) 2 \xi^{*} \geq 1-\sqrt{\frac{\mathcal{D}\left(\mathbb{P}_{1} \| \mathbb{P}_{0}\right)}{2}} ξ∗≥1−2D(P1∥P0) , where D ( P 1 ∥ P 0 ) ∫ y P 1 log P 1 P 0 d y \mathcal{D}\left(\mathbb{P}_{1} \| \mathbb{P}_{0}\right)\int_{\mathbf{y}} \mathbb{P}_{1} \log \frac{\mathbb{P}_{1}}{\mathbb{P}_{0}} \mathrm{~d} \mathbf{y} D(P1∥P0)∫yP1logP0P1 dy is the Kullback-Leibler (KL) divergence of P 1 \mathbb{P}_{1} P1 and P 0 \mathbb{P}_{0} P0 . It can be easily verified that the original covertness constraint is satisfied as long as D ( P 1 ∥ P 0 ) ≤ 2 ϵ 2 \mathcal{D}\left(\mathbb{P}_{1} \| \mathbb{P}_{0}\right) \leq 2 \epsilon^{2} D(P1∥P0)≤2ϵ2 . Furthermore, by substituting (6) and (7) into the expression of D ( P 1 ∥ P 0 ) \mathcal{D}\left(\mathbb{P}_{1} \| \mathbb{P}_{0}\right) D(P1∥P0) , we have D ( P 1 ∥ P 0 ) N ζ ( ∣ h w H w ∣ 2 σ w 2 ) \mathcal{D}\left(\mathbb{P}_{1} \| \mathbb{P}_{0}\right)N \zeta\left(\frac{\left|\mathbf{h}_{\mathrm{w}}^{H} \mathbf{w}\right|^{2}}{\sigma_{\mathrm{w}}^{2}}\right) D(P1∥P0)Nζ(σw2∣hwHw∣2) , where ζ ( x ) x − log ( 1 x ) \zeta(x)x-\log (1x) ζ(x)x−log(1x) for x ≥ 0 x \geq 0 x≥0 is a monotonically increasing function w.r.t. x x x . Then the original covertness constraint can be simplified by ∣ h w H w ∣ 2 σ w 2 ≤ ζ − 1 ( 2 ϵ 2 N ) (8) \frac{\left|\mathbf{h}_{\mathrm{w}}^{H} \mathbf{w}\right|^{2}}{\sigma_{\mathrm{w}}^{2}} \leq \zeta^{-1}\left(\frac{2 \epsilon^{2}}{N}\right) \tag{8} σw2 hwHw 2≤ζ−1(N2ϵ2)(8) where ζ − 1 ( x ) is the inverse function of ζ ( x ) . \text { where } \zeta^{-1}(x) \text { is the inverse function of } \zeta(x) \text {. } where ζ−1(x) is the inverse function of ζ(x).