企业网站制作建设的框架有哪几种,网站自定义错误页面模板,oa系统网站建设方案,在广州注册公司流程和费用2014年第三届数学建模国际赛小美赛
A题 吹口哨
原题再现#xff1a; 哨子是一种小装置#xff0c;当空气被迫通过开口时会发出声音。哨声的巨大而引人注目#xff0c;使其对警察和体育裁判来说至关重要。当救生员、迷路的露营者或犯罪受害者使用它们时#xff0c;它们可以…2014年第三届数学建模国际赛小美赛
A题 吹口哨
原题再现 哨子是一种小装置当空气被迫通过开口时会发出声音。哨声的巨大而引人注目使其对警察和体育裁判来说至关重要。当救生员、迷路的露营者或犯罪受害者使用它们时它们可以挽救生命。专业的口哨需要产生高强度的声音。如何设计世界上最响的口哨
整体求解过程概述(摘要) 为了解决这一问题我们提出并评估了两个基本模型。利用有限元分析软件对模型进行求解得到最优解理想条件下的最大声强为166 dB左右。更重要的是我们创造性地认识到强度受内在和外在因素的影响。在此基础上以足够合理的参数对实际情况进行了分析。然后我们可以寻求最优的解决方案无论具体的要求是不同的应用。此外我们还对我们的数据和因素主要是内在参数进行了充分的敏感性分析。 在湍流模型中基于从开口到末端追踪空气的目的采用简单的策略来推断声音是如何产生的。提出了一些假设和机理为后来改进和推广的模型奠定了基础通过这个模型我们可以找到一些用于计算声强的数据。一般采用ANSYS来实现该模型。 在气-声转换模型中首先考虑湍流模型得到的结果然后计算这些激励参数与最终输出强度之间的关系。用近似理论建立方程计算结果。我们对不同的内在因素进行敏感性分析以评估我们的策略并找到最优解。采用田口DOE方法进行灵敏度分析效率更高。 在改进的模型中首先考虑了基本模型的不足描述了环境和用户对强度影响较大的实际情况。物理研究的信息是我们分析的基础。由于口哨从民用到军用都有着广泛的应用因此我们在模型中引入了策略并解释了机制从而可以计算出特定条件下模型的最优解。 最后我们将我们的模型与其他模型进行了比较并通过仿真进行了验证。我们对我们的模型进行了反思并对我们的模型在实际情况下能够轻松有效地解决问题进行了评价但还有一些问题需要进一步完善例如吹口哨是一个多目标问题。
模型假设 假设环境包括温度、湿度是稳定的 假设吹入的空气是理想气体这意味着没有分子间的相互作用分子本身不占任何体积。 假设气体的雷诺数为零。 假设该腔体的粗糙度不存在。 假设气体粘度为固定值。 假设腔体不存在变形 假设密封室密封良好
问题重述 如何估计口哨的整个过程 声强受多个因素控制但这几个优化因素尚未明确确定。有必要选择最重要的部分因为其他部分可能毫无意义。 流体动力学过程是一个复杂的过程仅仅通过实验是无法得到清晰的结果的。用软件追踪哨声中的空气是最有效的方法。 根据物理学中流体力学的相关知识不难找到重要元素与声声强之间的内在联系即通过建立数学模型和方程来推导结果。 如何定义最佳配置 从临界尺度的角度分析了影响哨声特性的重要因素包括气压和速度。通过查阅大量的研究资料我们发现圆形哨声在生活中是普遍存在的具有优良的性质。因此我们选择圆度作为基本形状。对于其它工艺参数基于工艺模拟和正交分析方法对各参数进行比较后通过重复模拟进行优化。以形状为主其他参数可稍后确定。 总体优化 通过仿真计算得到了圆形哨子的近似最优解。与其他形状如矩形相比圆形口哨是否能发出最大的声音是不确定的。在保持气室比例不变的情况下改变不同的形状进行强度分析。 经过一系列的模拟我们应该找到必要的因素和他们的优先次序其他可能没有意义的设计一个响亮的口哨。因此在考虑灵敏度和鲁棒性的基础上提出了一种新的优化哨子算法。 实际上声音强度可能会受到外部参数的影响例如温度、湿度、人的技能。这些参数可能不是由特定的模型计算的但它们可能对强度有很大的影响。 如果没有可用数据怎么办 物理问题的目标函数使用机制社会科学的目标函数使用数据。显然我们可以从物理和科学论文中获得一些数据。所有模拟和模型都基于这些数据。
模型的建立与求解整体论文缩略图 全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可
部分程序代码(代码和文档not free)
xlinspace(0,1.5,100);
y(6/9.463822)*x.^(-1)-(1/9.463822)*x.^2;
plot(y,x);
hold on;
plot(0.05*y,x);
hold on;
plot(0.1*y,x);
hold on;
plot(0.2*y,x);
hold on;
plot(0.3*y,x);
hold on;
plot(0.4*y,x);
hold on;
plot(0.5*y,x);
hold on;
plot(0.6*y,x);
hold on;
plot(0.7*y,x);
hold on;
plot(0.8*y,x);
hold on;
plot(0.9*y,x);
hold on;
%plot(0.5*y,x);%hold on;
%plot(0.5*y,x);
text(0.5,1.5,)
xlabel(p/p1);
ylabel(U/U*);hold on;
/
xlinspace(0,1.0,100);
y1.095445115*x.^(1/7);
plot(x,y);
xlabel(p0/p1);
ylabel(c0/U*);hold on;
/
clear all
u22.12;
a0.86;
p101315.39;
k340/(1.4*u);
w(a*a)*p*p/(2*2.39*340*(1k)^2)/10^-12;
db10*log10(w);
db全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可