如何在工信部网站注册,简易网页设计代码,网站宣传制作,互联网开发软件来源#xff1a;人机与认知实验室1. 智能的产生1.1 智能生成机理有关智能生成的机理#xff0c;一直是许多领域关注的焦点问题#xff0c;涉及面之广、深很是少见#xff0c;初步梳理可能会与这样几个最基本的问题有关#xff1a;认知生成的机理、知识生成的机理、意… 来源人机与认知实验室1. 智能的产生1.1 智能生成机理有关智能生成的机理一直是许多领域关注的焦点问题涉及面之广、深很是少见初步梳理可能会与这样几个最基本的问题有关认知生成的机理、知识生成的机理、意义生成的机理、情感生成的机理、情境生成的机理甚至还避不开哲学的基本问题世界的本源是物质的还是意识的我是谁从哪里来到哪里去认识世界的手段如何语言是破解人类智能的钥匙吗心灵与现象的关系如何等等……这个问题远不是几位数学家、哲学家、物理学家、计算机专家、自动化专家、社会学者、心理学学者、语言学工作者开几次研讨会所能解决的历史已经证明莱布尼兹、维特根斯坦、爱因斯坦、薛定谔、图灵、维纳、香浓、贝塔朗菲、冯诺依曼、西蒙、明斯基、辛顿等先驱大师的智能思想混合在一起并没有发生期待中的化学变化。这个问题有点像爱情生成的机理一样有一千对罗密欧与朱丽叶、一万双许仙与白娘子的故事就有成千上万的解释和理解。对人类而言这是一个永恒的话题是世世代代追求的梦中情人和理想家园。无论如何“没有人就没有智能也就没有人工智能”这个道理依然存在实用。由于多种原因人们常常把智能与科学技术联系在一起简称为智能科技这是不准确的。智能早于科技的出现当人们为了生存使用石块、木棒和火时就出现了智能。那时还没有科技。毋庸置疑智能创造了科技以后对智能本身的发展和演化起到非常重要的作用尤其是极大地改变了人们的衣食住行和精神世界。科学研究采用可观测、可测量、可证明的方法。这意味着人类可以观察、测量某种现象或问题然后用数学工具形式化描述为严格准确的知识进而找到对具体自然、社会现象或问题的规律性解释或结论做出实证或证伪。可是再后来出现了物理的不可测、经济的不可能、数学的不完备……慢慢地终于人们像当年怀疑千年神学一样开始怀疑现代的科学了……智能的生成机理也许就像哲学中“我”的三个问题谁哪来哪去本质是文化问题智能也是多种文化交互作用的结果。其中休谟之问能否从客观事实中推出主观价值来即如何从“是/being”推出“应该/should”问题可能是一个切入点几乎所有的智能生成都将涉及到主观目的和动机无论有意或无意都会与情境中的客观事实变化相关。譬如表象与本质常常互为嵌套表里不一似是而非。实质上人类的理解过程就是在事实being中寻找到了价值should的过程。有词典解释为to know the meaning of……这个know是主体的这个meaning也是个性化的。所以严格意义上讲理解就是自以为是而智能则是实事求是。智能是不分领域的但是可以跨域迁移的所以军事智能准确地讲应是智能军事如同智能农业、智能交通、智能医疗等这些都是智能在不同领域方向的应用但在许多基本机理方面是相通的如在输入端的表征方式、在理解融合过程中的推理机制、在输出端的决策辅助手段等。真实的智能研究既包括非完全信息下的博弈决策也包括完全信息下的直觉洞察如把所有真实的材料都给你你能装配好鲁班锁和魔方吗你能做出敌人会仁川登陆的正确决策吗智能最重要的表征是决策的关键点在哪里重点关注的是什么如何恰当地使用数据、信息和经验。而不是那一堆CNN、RNN、ANN、DL、RL、Bayes、Markov……若达到此目的就需要静下来扪心自问一下现有的这些常规方法/参数到底有啥问题哪些东西可以形式化哪些东西不可以形式化如何抓住这些牛鼻子找到并解决这些关键问题休谟之问表面上是主客观关联问题即天行健客观规律—相对论与君子必自强不息主观意愿—世界观能否相互转化的问题。实际上休谟之问还有一个关键之处——推这将涉及到归纳、演绎等方面的不完备性问题更重要的是这个“推”还将与类比论证有关尤其是源自于心理和物理现象的差异。“我们在我们自身中发现了记忆、推理、感到愉快和感到痛苦这样的事情。我们认为棍子和石头不会有这些经验但其他人却有。”对他心主观的类比显然不同于对物理事实的类比这要求一种有别于物理学解释的假定。于是我们诉诸于主客观跨界类比“其他人的行为在许多方式上类似于我们自己的于是我们假定一定有类似的原因”注Rosenthal编《心之性质》英国牛津大学出版社1991年版第89页。。他人按我们同样的方式行为因此在我们感到郁闷或愉快时他人会同样感到郁闷或愉快。也就是说身体行为上的相似不应该仅仅由物理、生理上的因果关系进行解释也应该可以推出知识、意识和感情上的相似。这种同情共感作用的机制实际上是实现人与机器之间产生有效对话、协同的前提和基础。天行健君子必自强不息吗这个问题在西方的休谟之问看来很难成立在《易》中却不尽然变通change不但涉及自然秩序、人类社会还会与人自身有关这也是东方的态、势、感、知与西方的Situation Awareness (态势感知)不同之处人类智能的形成过程就是从感觉到知觉、从感性到理性的过程吗真实的情况应该不是这样的因为还有从知觉到感觉、从理性到感性的加工过程这里面既有西方人倚重的线性思维也包含东方人擅长的非线性思维。对事物的清晰认识应该不是就事论事、就物论物而是通过与其它事物所构建起的参照系所对照出来的。人对事物的认知一般是多参照系触动的其中包括显、隐坐标系有机的融合作用藏猫猫、石头剪刀布、图灵测试等游戏里面包含了这些成分。智能具有时代性每一代人的智能都不同从某种角度来看牛顿的智能还不如一个现在物理系大学生的智能至少牛顿还不知道相对论的存在。但是牛顿超越了他那个时代照亮了他同代及以前诸代的蒙昧与黑暗。从知几、趣时、变通的角度来看智能也是一种艺术形式艺术的基础是情感艺术的哲理是美学。类比比较比喻比方相似都是实现智能艺术的重要途径很多情境下类比机制的增强与衰减常常意味着智能力的强弱。近来Bengio说深度学习需要被修正。他认为只有超越模式识别的范围更多地了解因果关系它才能实现真正的人工智能革命。换句话说他说深度学习需要开始问为什么事情会发生。认知科学实验也表明认识因果关系是人类发展和智力的基础尽管目前还不清楚人类是如何形成这种知识的。这些观点也对也不对对是因为他比机器学习前进了半步——不再仅仅依靠统计的相关性分析机械前行不对是因为他还没有走出西方科技工作者优良的传统思路仍把因果关系看成是求科学根问技术底的一副万能良药。实际上类比、比较、比喻、比方、相似才可能是实现创造性智能的最重要途径包括拟合生成各种各样的新概念。留心一下你就会发现小孩子们平时很喜欢说某某像某某总爱拿已知的事物类比未知的事物从形状、颜色、大小等外部状态表象属性开始再到时间、空间、变化等内部趋势本质关系也许这就是人类认知的秘密吧“因果”更可能只是“果因”的另一种称谓而已无论苹果落地还是水星光偏莫不如此牛顿和爱因斯坦大概都是主观唯心主义者吧无独有偶有人就一语中的地说过“本质上数学就是有关概念的学问”当然所有的概念都与主观有关。智能包括人工智能都是复杂系统其中的许多事情不是都能用逻辑思维解释清楚的里面还有大量的非线性、非逻辑成分可解释性、终身学习、动态表征、强弱推理都需要类比但类比的机制机理远远不是单纯用科学技术所能解决了的尤其涉及情感、情境、虚体等更是如此试图单纯用数学尤其是用现代不完备的数学解决智能或人工智能的主要核心问题无异于缘木求鱼、画饼充饥、水中捞月如同拿着木棒、石头造飞机和火箭一般原因很简单定性的真东西尚都在遥遥无期中探索定量的只能是自动化。在人类前进的过程中很多人费了很大的努力和心血但在某个领域一直没有大的进步和质的飞跃始终处于乱麻一团东一锤子西一棒子遍地都是坑就是打不出水来究其因一是没找到乱麻团的线头二是没有用心前者是定位问题后者是努力问题。1.2 类比与智能如果说机器深度学习有几个重要的边界数据边界、语义边界、符号边界和因果边界。那么突破这几个边界的口子可能就是——类比不仅是比例类比更是跨域机器类比机理的形成可能就是一条前进的光明大道。所谓类比是这样的一种推理它把不同的两个两类对象进行比较根据两个两类对象在一系列属性上的相似而且已知其中一个对象还具有其他的属性由此推出另一个对象也具有相似的其他属性的结论。类比推理的基本原理可以用下列模式来表示A对象具有属性a、b、c另有属性d。B对象具有属性a、b、c。èB对象具有属性d。上述的“A”、“B”是指不同的对象或是指不同的个体对象比如地球与太阳或是指不同的两类对象比如植物类与动物类或是指不同的领域比如宏观世界与微观世界。类比推理的应用场合是多种多样的有时也可以把某类的个体对象与另—类对象进行类比例如为了弄清某种新药物在人类身上的效用和反应如何往往是用某类动物个体来做试验然后通过类比求得答案。类比的结论是或然的。类比的结论之所以具有或然性主要是由于以下两方面的原因一方面是因为对象之间不仅具有相同性而且具有差异性。就是说AB两对象尽管在一系列属性a、b、c上是相似的但由于它们是不同的两个对象总还有某些属性是不同的。如果d属性恰好是A对象异于B对象的特殊性那么我们作出B刘象也具有d属性的结论便是错误的。例如地球与火星尽管它们在一系列属性上是相似的太阳系的行星存在着大气层适于生命存在的温度等等但是地球上有生物能不能说火星上也有生物呢?不能因为火星还有不同于地球的特殊性。近年来航天的科学考察表明火星上并未发现什么生物。另一方面对象中并存的许多属性有些是对象的固有属性有些是对象的偶有属性。比如血液循环是人体的固有属性而吃了鸡蛋产生过敏反应这是个别人身上的偶有属性。如果作出类推的d属性是某一对象的偶有属性那么另一对象很可能就不具有d属性。类比作为一种推理方法它是通过比较不同对象或不同领域之间的某些属性相似从而推导出另—属性也相似。它既不同于演绎推理从一般推导到个别也不同于归纳推理从个别推导到一般而是从特定的对象或领域推导到另一特定对象或领域的推理方法。尽管类比推理可以在某类个体对象与另一类对象之间进行但是类比推理却不能在某类与该类所属的个别对象之间进行。如果以为类比推理是归纳推理和演绎推理的压缩那就错了。类比推理只能在两个不同对象或不同领域中进行过渡。有人以为存在着这样一种类比推理S类的某一个体具有属性ab、c、d。S类具有属性a、b、c。è S类具有属性d。这种观点是错误的因为这是凭主观想象用类比推理的模式去描述了一个实际上是归纳概括的逻辑过程。诚然无论是归纳推理还是类比推理都是已有知识的外推和扩展。但是不能因此而混淆了两种推理方法之间的根本区别归纳推理是从个别特殊概括到一般而类比推理是从某一特定的对象或领域外推到另一个不同的特定的对象或不同的领域。还有人认为有这样一种类比推理S类对象具有属性a、b、c、d。S类的某一个体对象具有属性a、b、c。è S类的某一个体对象具有属性d。这种观点同样也是错误的因为这是凭主观想象用类比推理的模式去描述了一个实际上是演绎的逻辑过程演绎推理是从一般推出个别特殊而类比却是从某一特定对象或领域外推到另一个特定对象或领域的。这种根本区别不能混淆。机器的类比很难实现是因为人类还没有梳理出自己的类比机制不知己就不知彼。没有同理心很难知“彼”没有同情心更难知“己”没有共感何谈共鸣无论类比吧A对象具有关系a、b、c另有关系dB对象具有关系a、b、cè B对象具有关系d 构成世界的也许是关系而不仅是属性人能够有效利用各种少量错误样本和少量正确样本的学习获取知识和对世界的认知在修正错误认知时可以改几处但不一定整个过程全改。人还可以类比形成训练样本数据以外的智能行为。而机器是使用大量正确样本的学习获取相关性结果在修改错误时常常动一发而动全身改一处而全过程修改。机器很难归纳、演绎形成训练数据以外的智能行为。图灵奖得主、“贝叶斯网络之父”Judea Pearl最新力作《为什么关于因果关系的新科学》一书上半部分场在谈因果关系下半部分在谈事实性的因果关系价值性的因果关系却不见了踪影而现实智能世界中既包含形式化事实部分也涉及到价值性意向部分所以针对因果性中的主观部分得不到很好的理解和处理这种因果终究还是不全面、不成熟、不能解释、非鲁棒的半成品相比之下事物之间差别最大而联系最紧的造势机制人们无关相关化能力的类比洞察能力跨度可能对于创新更重要一些吧。与机相比人的小样本是多样性、正负性、跨域性、参照性的是生态成长性的是记忆而存储连续性的是举0.1反N不触类也旁通型的……也许人的样本不在小在乎是非之间也1.3 数学与智能数学和智能一样都是人类在与各种环境中的事物打交道中产生出来的既有顺理成章也有千奇百怪所以人类的推理也有许多非树、非林结构这也是说数学不是逻辑的原因之一吧有人发现画一个鸡蛋难画三个鸡蛋容易些画三个鸡蛋在盘子里更好画在盘子上放个叉子或一双筷子就非常容易画了。其实对另外一些人而言这个发现也许就不成立啦。当前数学体系的不完备性和公理化就隐含着非逻辑的假设——蛙跳现象不见树木也可见森林或者不见森林也可见树木。自然语言是包含价值性的、能力性的、启发性的“for”之目的数学语言则蕴藏着事实性的、功能性的、产生性的“if”之形式化。根据菜谱一般很难炒出好菜来这需要看主体大厨根据菜谱也可以炒出好菜来关键是他得有“非家族相似性”的炒其他菜的经验和炒此菜的动机实际上炒菜之前的情感信息很重要。正如戴维·卡森所说“我非常相信设计的情感以及在有人开始阅读之前在他们获得其余信息之前发出的信息他们对产品、故事、绘画的情感反应是什么——不管是什么。”有人说数学不是逻辑是一种发现。数学语言无主体性背后有结构这个结构需要探索。而自然语言有主体性强调理解。自然语言与数学语言不是一回事中间有鸿沟需要分开来研究。数学语言与自然语言之间的鸿沟里面正是人工智能的困难所在如何把事实与价值、陈述与判断、主观与客观、形式化与意向性、态与势、感与知、being与should、主动与被动等因素有机地关联在一起这也是人机融合智能的瓶颈之一。它横挡在人类面前得意洋洋……一直认为智能的核心和本质比智能的计算和模型重要的多。西方人之所以在科学技术上不断突破和领先主要是有着深厚的积累这种积累不但包括物理、化学、生物等具体学科的更包括哲学、文学、艺术等抽象领域的。以智能为例表面上符号主义、联结主义、行为主义衍生出知识图谱、深度学习、强化学习等一系列可计算、可模型的工具和方法实际上这些主义背后的怀疑哲学、形式推理、因果分析等思想却是真正使然的动力源泉。而纵观当前我国智能领域数据、算法、算力俨然成了智能领域的代名词而在西方智能的关注则是在常识、自主、学习等机制机理的突破上先进落后、孰是孰非、的矢有无、颠覆大小一目了然。没有对根本的认知速度越快失之千里。仔细想想当你全力追逐眼前的、表面客观的存在Being ——现实性时而对手却在认真把握未来的、内部无限的趋势Should——可能性如此这般一番枪声还未响起你就落后了阵势还未摆好你就屈人了攥着一把纸币或数币以为自己真有本钱吗当然智能领域的发展不是不需要数学而是需要更好的数学能够把形式化和意向性有机结合的数学不是不需要数据而是需要更好地理解数据能够把物理性和心理性综合表征的数据不是不需要算法而是需要更好地认识算法能够把事实和价值有效弥聚的算法不是不需要算力而是需要更好地发展算力能够把个性和共性融合协调的算力。很多人从小就想象有另外一种数学体系与现有的数学体系不同它既包括数字图形也涉及文字描述既能够定量计算也能够定性算计既可以归纳演绎也可以隐喻类比既能够逻辑达理也能够感性通情既可以形式化自洽也可以意向性矛盾既能够产生式假设也能够启发式求证既可以表征人工智能也可以指示人类智慧既能够处理形而上学也能够混合辩证思维既可以解释物理世界也可以说明心理环境......求解休谟之问的关键类比尤其是实物、情境、情感之间融合混杂类比机制的解析。深度的类比既可以饺子感知温暖也可以狐狸与酸葡萄态势得不到既可以母亲祖国也可以计算机之父既可以摹状可能性也可以泛化现实性既可以喜鹊叫喳喳也可以风马牛也相及既可以主观客观化也可以客观主观化既可以非存在的有也可以有中生无既可以一多分有也可以千变万化……未来的数学可以求解休谟之问休谟之问也可以为未来的数学提供前提组成各种矩阵方程两者不但表象互补而且本质一致既对立又统一。这种想法目前看来很不切实际但未来依然存在着隐约的可能性这或许也是实现人机融合的基础路径之一。我们应该为未来的智能方式设计而不是为过去的智能方式设计。尽管现在看来有些“荒谬”1.4 直觉与智能从智能领域的角度看意识也是一种存在。无意识即还没有发生或产生出关系潜意识就是隐约出现可能的关系。形式符号系统的意义解释和知识建构如何可以内在于系统而不仅仅依赖于我们头脑应该是人机融合智能研究的核心问题。如果把智能看做大海那么认知就是通向大海的河流而思维则是河流中的大船上面载满了各种的深思熟虑和各样的奇思妙想。如同大海不是河流也不是大船一样智能不是认知也不是思维。毕达哥拉斯把数与图当做信仰通过简单的计算就可以准确预测斜边的长度多么神奇而又准确的占卜啊实际上毕达哥拉斯这个崇拜可能仅仅是个发现而不是真正的发明创造正如爱因斯坦所言“创造并非逻辑推理之结果 , 逻辑推理只是用来验证已有的创造设想。”不难看出真实的创造往往含有非逻辑的成分抑或是逻辑与非逻辑成分的混合不单纯是事实上的因果关系还有价值上的因果构建包括有的放矢的果因关系仿佛作家作文、画家画画一般。人类伊始犹如婴儿并无思维和智能。开始只是观察并以本能生存。慢慢通过把个人的认知观、察、觉与其他成员交流汇成思维方法最终变为智能形式开天辟地、改造自然同时也改造着自己和同族。从上述过程中我们不难发现人类的认知、思维、智能都是时空性人物环境系统的混杂交互嵌套而不是三元的绝然分立而是阴中有阳阳中有阴阴阳有灰的进程。尽管如此三者还是各有千秋棱角分明。认知是初始阶段它是人类通过观察获得数据、信息、知识、模式、状态、趋势的第一步通过认知人们从自然和社会交互中形成了不同的概念名提炼出差异的规律道梳理为多种工具和方法。认知是数据和信息的流动过程。思维就是在认知的基础上形而上、学而思出的高级认知维度这个维度侧重于语言产生后的反映及其手段。思维最初是人脑借助于语言对客观事物的概括和间接的反应过程。思维以感知为基础又超越感知的界限。通常意义上的思维涉及所有的认知或智力活动。它探索与发现事物的内部本质联系和规律性是认识过程的高级阶段。思维对事物的间接反映是指它通过其他媒介作用认识客观事物及借助于已有的知识和经验已知的条件推测未知的事物。思维的概括性表现在它对一类事物非本质属性的摒弃和对其共同本质特征的反映。随着研究的深入人们发现除了逻辑思维之外还有形象思维、直觉思维、顿悟等等思维形式的存在在人类智能应用过程中这些思维途径往往是混合甚至是融合使用的而在机器学习或人工智能中这些思维方式略显孤立或被机械捆绑实施的。智能与认知和思维最大的区别是智性也就是人们常说的灵性和洞察性。即这里的智能可能不同于计算智能、感知智能和认知智能而是洞察性的智能能够举一反三、触类旁通、指鹿为马、指桑骂槐……尽管表面上东方有点不讲理西方有些不尽情但老子、亚里士多德、刘徽、莱布尼兹等圣人先贤依然在没有现代精密仪器设备和大数据的情况之下却也可以发现不少道和名的规则、概率估计有些至理应该是超越科学技术中的实验求得吧……人本身也许就是最好的精仪和设备人可以将事物进行人格性同化而机器却不能进行机格化顺应。智能的是非观不是截然的二元对立而是彼此间的渗透。好的智能可使我们能了解到“是什么”也能知道“应是什么”更能理解“为什么”。认知科学、思维科学、智能科学三者肯定有重叠部分但是各自的主要思想是不同的如果这样就需要特别关注三者的主要区别而不是过多考虑他们重叠的地方认知是数据与信息的流动思维是概括性的推测反映智能为涉及认知、思维的是非使能力。人类在交互时无论对象是人还是物都会产生一种能力同情同理共感化对象主动性跨越事实界限生成各种意义和价值如做各种有意义的类比没有气泡的可乐等于没有辣味的川菜甚至把枯燥的科学变成有趣故事。如果说维特根斯坦的分析哲学是在寻找世界的逻辑之旅那么海德格尔的现哲学就是试图发现世界的本源所在。抛开他俩与希特勒的是是非非单就对智能的贡献而言都是最底层的思考。只可惜图灵只测试了维特根斯坦而没能机制化海德格尔。社会规范化语言的《逻辑哲学论》侧重规则理性生活自然化语言的《哲学研究》关注于统计概率延展抛射化直觉的《存在与时间》更多非逻辑洞察直觉。现象学的关键在于意识的意向性。所谓“意识的意向性”最早是由布伦塔诺提出来的胡塞尔从他得到启发了解了我们的意识一定有意向性。换句话说意识在本质上都是指向意识之外的事物你不可能有意识而没有意识的对象。我们一般常用的一些词像知觉与概念、观念与幻想、渴望与欲求这些在意识里面出现的活动都是指向某物。如果你没有指向一样东西的话那你意识到什么东西呢意识也不可能出现了因此所谓的“意识”就是意识到某个对象。那么“回归事物本身”是指什么呢就是你要排除各种成见理论或预设而只就现象本身来看。海德格尔认为“此在”是个正在生成的但目前仍然是个尚不是的东西指的是人的生成过程换句话说就是指正在生成、每时每刻都在超越自己的人。但他不是指一般意义上的名词的人而是生命活动的动态的人。“此在是在世中展开其生存的”是人在成长过程中呈现其生命价值。在不少情境中直觉是发明的工具逻辑是证明的工具直觉和灵感在发现真理方面比逻辑推导更重要得多。从这个意义上说目前的人工智能研究多少带有叶公好龙、掩耳盗铃的味道没有产生直觉的趋势只是反映状态逻辑的局势。也许一张好的照片里面不仅有故事还应该有点神性能够使人产生联觉画面里面有属于欣赏者独特的旋律和设计者与欣赏者之间的同情共鸣。有人从西方哲学的角度也谓之非存在的有。比如说不同的“美”看不见摸不着但从有的作品中就能感受到这种以有限的具体画面诠释出无限的抽象过程就是“非存在的有”如西方的圣诞老人东方的孙悟空如同好照片里的魂和真正智能的魄也许能根据客观数据优化决策的就是人工智能而能根据主客观数据/信息/知识优化决策的就是自然智能能根据人、机、环境系统变化而优化决策的就是人机融合智能。无论如何一旦你把功能当成了能力的话智能就会消逝的无影无踪智能应是加速认知形成洞察的利器它就在你的身边每时每刻……智能是自我意识与他人意识的感知混合通过同情同理心产生可能性的理解和推断适时合地……据英国《金融时报》报道谷歌声称已经达到“量子霸权”打造出第一台能够超越当今最强大的超级计算机能力的量子计算机该计算机能够在3分20秒内执行一个计算而同样的计算用当今最强大的超级计算机Summit进行需要约10000年。这是一个真正里程碑式的进展对于计算而言的确如此然而对于智能而言也许不尽然真正的智能不是计算是融合了算计的计算。算计中包含着多种矛盾认知张力而认知张力可以驱动认知向量产生意向性。计算本身并没有方向而是新计算里混合了认知张力就变成了有方向的且包含了主客观向量的矩阵。 计算是有时/空间约束的也可以没有而认知可以没有时空约束也可以有。何时何处使用有/无时空约束的计算或认知就是智能的调控和调度。随便給出一组数你总能找出或组成某种意义记忆下来如52579952可以谐音成“我爱我妻救救我儿”等但是机器不行它可以存储但没有意义。计算是事物数术一种逻辑功能算计是关系认知一种类比能力。算指逻辑推理计指认知洞察。算计是算在前通过逻辑推理产生洞察策略……计算则计在前通过认知关系进行逻辑操作。算计偏认知和洞察计算侧数术和逻辑。不是简单的逆运算关系。AI是一种无意向性的功能计算为主而智能是一种有意识的能力算计为主。每个简单的人都有理性只要告诉他推理的前提是什么就行了。但是理解却不同它提供的是原初性的东西从而也是直觉性的常识知识在这里出现了人与机之间天生的差别。如同并行计算中的关键不是计算Being而是专业性问题的并行性梳理和分析一样未来的智能也是一开始就得有良好的顶层结构设计而不是过程中的大修大补。而要实现这一目标人机融合的必要性就显得越发突出了。未来的人机融合智能可以设计出设计者没有想到的设计、可以计算出计算者没有算计(Should)出的计算、可以决策出决策者没有意料出的决策、可以反思出反思者没有反思出的总结……2. 何谓军事智能军事智能不是军事人工智能而是其中既包括机的自洽性过程计算也包含有人的矛盾性有向算计军智如生物进化一样不太讲究多强大、多聪明而更关注任务执行中的恰当变通它不是包治百病的神药而是对症下的准药最高境界是达到不战而屈人的目的。当前军事系统的自主化与弱通讯、无通讯条件下的高级自动化等价而现代的军事无人化侧重于统计概率下的机械化自动化。即使科技发展出的装备再先进其形成的产品或系统也只是机器计算01的数理基础仍然没有变就像5G、6G、…NG一样若没有意向性和价值性出现系统本质上还是机器。军事智能的本质是暴力性对抗角逐即要摧毁对方的博弈意志人工智能的本质是服务性智力满足对象的需求。军智以损人为本民智以助人为乐。AI作为计算的逻辑实质上是一种“主体转向”“军智的算计逻辑”是当仁不让地以人类为主体研究的对象是对手的认知、思维、智能种种强调应是什么应干什么等问题军智不但涉及手段还包括意志和随机偶然性AI计算的逻辑则是将计算机作为信息处理的主体侧重是什么干什么问题研究的是计算机的处理方式以及人与计算机的互动关系。未来的军事智能不是功能性的工具锤子而是能力性的软件硬件湿件它不太讲究事实和形式多涉及价值和意义。它会不断地超越军种、行业、领域的格局和前瞻的战略视野是颠覆性技术创新的重要支撑。在20世纪50年代末美国军方的共识是其指挥与控制系统不能满足日益复杂和快速多变的军事环境下快速决策的紧迫需求1961年肯尼迪总统要求军队改善指挥与控制系统。在该国防安全重大问题提出以后国防部指派DARPA负责此项目。为此DARPA成立了信息处理技术办公室并邀请麻省理工学院约瑟夫•利克莱德J.C.R.教授出任首任主任。虽然是军方的迫切需要和总统钦定的问题但是DARPA没有陷入军种的眼前需求和具体问题而是基于利克莱德提出“人机共生”的思想认为人机交互是指挥与控制问题本质并就此开展长期、持续的研究工作。此后IPTO遵循着利克莱德的思想逐渐开辟出计算机科学与信息处理技术方面的很多新领域培育出ArpaNet等划时代颠覆性技术产生了深远的影响直至今天。军事智能化不是无人化也不是自主化。自主化指自己作主不受别人支配程度无人化是指能在无人操作和辅助的情况下自动完成预定的全部操作任务的程度而军智主要是实现更高价的觉、察并实施诈和反诈是人机环境系统融合的深度态势感知是人机融合的“钢”装备“气”精神。当前许多人认为军事智能就是军事AI还有人认为军智就是自主系统或者无人系统大都是没有认清军事对抗博弈的实质使然。另外一个需要警惕的军智问题是单纯机器计算的越精细、越准确、越快速危险性越大因为敌人可以隐真示假、造势欺骗、以真乱假所以有专家参与的人机融合军智相对显得更重要、更迫切、更有效。3. 人机融合智能人、机、环境系统之间的相互作用产生了智能这不仅是一个科学问题也包含非科学部分的研究如人文艺术、哲学宗教其中人是复杂系统机是相对简单的系统环境的涨落变化非常大所以我们研究的人机环境系统既有“确定性”又有“随机性”就成为“复杂的巨系统”。钱学森先生认为针对“复杂的巨系统”人类目前还没有找到解决的一般原理和方法人机融合系统的深度态势感知理论可能就是一种有益的尝试。有人说没有经过人机融合合作训练过的智能系统就是弱智系统。这句话的背后隐含着这样一个事实当前人与机是不同的而且两者之间是失调、失配的。其实人机的职责分别在于准度和精度准度涉及方向精度关联过程。机器具有功能产生不了能力所以处理不了有意义有价值的联系也没有形成默会的知识和常识。人与人沟通时不说出的事物常常更重要人机交互时则不然主要是机器不了解这些潜在的前提和线索只好左顾右盼插浑打科所聊非所聊所答非所问就像现在的聊天、问答机器人一样没有主体性与客体性之间的理解揣摩没有博弈性语言学也没有主体间一对一的语义出现只能够陈述有限的事实不能够判断无限的价值。人机融合智能系统是一个资源调度中心一个资源调度员将人的湿件与机器的硬件、软件匹配起来在任务环境中进行资源的分配和控制。就如同一个单位指挥调度机构使得人、物、环境发挥更高的工效。人机系统要想充分发挥功能就需要有相应各件的支持与配合。只有进行软硬湿结合软件硬化硬件软化机件人化人件机化才能最大程度发挥人机系统资源调度的作用这就是适配性的问题。人的智能在于事前的无数据机器的智能在于事后的有数据而数据的价值和意义是由人确定的所以是可变的所以有机无人的数据是注定无用的。智能是一种虚实融合的非物质体有实构也有虚构其中“非存在的有”就是虚构的重要组成成分。就像摄影、体育、科研、生活一样……这种“非存在的有”可以或诱发或唤醒出某种某程度理解之外的理解并通过认知迁移、旋转变异出意料之外进而形成一系列新的感、觉、受、动、察、知……化合价表示原子之间互相化合时原子得失电子的数目如果形成的化合物的离子的化合价代数和不为零就不能使构成离子化合物的阴阳离子和构成共价化合物分子的原子的最外电子层成为稳定结构也就不能形成稳定的化合物。如果把人和机的智能都看成若干智能单元构成那么人机融合则看成智能单元之间的交换交换通畅无碍趋于稳定则会形成稳定的融合价。需要强调的是人、机的智能单元不同人的是认知智能单元机的是计算智能单元认知包括感性和理性计算主要与理性有关。认知是真实世界的反映表征计算是符号系统的仿真模拟而所有的仿真模拟都是近似的。如何把主客观有机统一起来这就需要更深层次的探索和思考。主观和意识都是一种心理性存在而不是常规意义上的物理性存在尽管它们依托在了动物物理性存在的高级形式——生理性存在平台上存在。但是它们终究是存在而不是非存在。人们通过使用它们不仅可以解释说明世界而且还可以构建改变世界。所有的科学技术、宗教信仰、人文艺术都是通过这种心理性存在与各种物理性存在相互作用而衍生出来的。机器中的软件和硬件本身就是物理性存在是为了被使用而存在着而人及其智能永远不会为需要它的东西现存着它被并入了利用它的系统存在者之中。机器总是具备某种功能是If…then…do而人是具有某种能力是For…then…do。如果智能拥有做什么的能力首先是因为人拥有能力。机器可用于制造是being但机器本身不存在去制造的冲动机器绝不可能先行把自己置于制造之中。与此不同能力是“为了……”的能力是should能力本身引导它做什么、如何做能力自己把自身置于自己之所为。故而能力提供了理解人及其智能的新思路。为什么会产生人的智能?因为人的能力只有借助于智能才能实现人为什么会有能力?因为人在世界中的存在是通过人的智能实现的。机器只能在某一场景环境中执行功能但永远不能在一个情境世界之内生成能力而人可以。在情境世界中人们可以感知到一种“内在关系”该关系存在于图画和一些对象之间而非概念和概念之间。无论这种“内在关系”存在于语词、对象还是概念之间它都不能简单地被还原为视觉性质它超越了视觉等“感觉”的状态空间范畴形成了联想等“知觉”趋势特征向量空间。如下图中的“鸭头兔头”算法的实质是建立在计算逻辑基础上的理性思维缺少非事实或反事实想象过程即面向事实中对象、属性、关系不断变换调整的认知动态过程。显性的明态势感知常常是可以计算的隐性的暗态势感知往往很难形成算法但是可以被认知的事实上在许多态势下认知的价值角度可以改变计算的事实。因果关系除了有事实上的还应该有价值上的吧当前语言包括形式化符号语言的作用被无限化了比如人们虚构了所谓的自我意识这一概念自我就是个性经历意识就是群体经验。实际上真实的知识、概念、意识不是来源于语言而是人、物、环境之间的交互语言就是一个工具就像科学技术、人工智能一样它们促进了人类的进步也束缚着文明的进一步发展。形式化的逻辑与意向性的逻辑不同一个是being逻辑一个是should逻辑类比就是尝试把两张逻辑统一起来而且should的“逻辑”常常是being的非逻辑。人机融合智能本质上就是处理这两种“逻辑”协同问题。即如何建立形式化计算意向性算计混合模型。4. 深度态势感知在态势感知的概念里“势”相对比较重要如何从各种各样的状态变量空间里及时准确地推出“势”来是众多智能领域研究者们梦寐以求一件事吧“有态无势”的评价结论实在是令人难以接受了! 针对这个跨越有人用跨越神经科学与神学的界限之难都不为过。其实这与大多数人的学科背景有关偏理工少人情世故状态空间常常与客观事实有关但大势所趋往往与主观价值相连比如塞翁失马是态焉知祸福则是势。也许态、势之间的转换不仅涉及归纳与演绎而且还可能隐藏着主客观之间的类比关系。罗素曾这样来表述类比论证“抽象的表述看来是这样的我们由观察我们自己知道一种‘A引起B’形式的因果规律其中A是一种‘思想’而B是一个物理事件。我们有时观察到某种B却不能观察到任何A我们于是推断出一个A”注Rosenthal编《心之性质》英国牛津大学出版社1991年版第90页。。反之呢如果A是一种‘物理’而B是一个心理事件……生活中这些心物理转化的类比比比皆是刻舟求剑、盲人摸象、望梅止渴、守株待兔等等。哈耶克曾说“我们的结论必定是对我们来说心智必然永远停留在物自体王国在那里我们只能通过直接经验了解它而永远不能完全解释或‘引申’到其它地方。即使我们可能知道我们经验的那种精神事件能够被运转自然其它部分的同样力量所生成我们永远不能说哪种特定的现实事件‘对应于’某一特定的精神事件。”于是人类不可能完全认识这个宇宙及其各种事物。结论与康德类似但用的是哈耶克自己的逻辑。他后来的经典概念就是“理性不及”。司马贺西蒙也曾用“有限的理性”去解释正常的经济活动。尤其是用理性化方法去模拟仿真真实的人机环境系统并且缺乏感性方面的辅助和引导就像失去了语气和语用后的人类语言只剩下干巴巴的语法一样。在态势感知中态就像是符合各种逻辑的语法而势更符合非逻辑的语义和语用。由态向势的转换实质上就是由逻辑向非逻辑的转换就是由客观实际向主观价值的转换。也是西方哲学中讨论的一个热点他人何在在我的意识中还是在之外亦即英美分析哲学主要关心的是他人之心的认知问题简称他心问题也就是我们怎样知道除我们自己之外存在着具有思想、感情和其他心理属性的人的问题。事物以数据、信息、知识方式进入主体意义是主体基于经验对事、物的关系反应给人们产生出各种关系模型和非关系框架并以情感-价值 事实-意义模式来整合认知世界的过程其结果表现为通情达理或实事求是这也是从状态空间内外产生出趋势目的的过程。对这种意义关系变化的理解有两个维度。一个维度凸显的客观的真实性用“态势”一词。一个维度强调的主观的意向性用“势态”一词。古今对情的理解也有两个维度。一个维度凸显情的发自內心的真实性。情实也。相应地有词语“情实”。一个维度凸显情的感物而发的多变性。情感也。相应地有词语“情感”。 如若不能文学艺术、宗教哲学也许还有存在的必要吧其实对人而言意义常常不是理性的产物而是感性的结果。比如说数学不一定如实反映描述主客观世界会有不少热爱数学的学者其中不乏靠此混饭的伪学者对此耿耿。因为他情感到了某种意义而不是理性。除了不完全的归纳、演绎之外类比是人类认识世界的一个主要手段和利器。但是好的类比不仅仅是属性上的更重要的是可能的或不可能的显/隐关系上的。而机器能否产生恰当的关系类比机制就将成为一个AI的难点和重点。在机器学习热闹过一阵子后因果关系又要姗姗来迟图灵奖得主Judea Pearl说了要建立真正的智能机器教它们因果关系才是关键。因果关系表面上看是揭示客观世界中普遍联系着的事物具有先后相继、彼此制约的一对范畴。原因是指引起一定现象的现象结果是指由于原因的作用缘之串联而引起的现象二者的关系属于引起和被引起的关系。实际上这大约反映出的是事实性的因果关系没有反映出价值性的因果关系。所谓事实性的因果关系是指客观性存在所引起的先后相继如科学中重力作用与苹果落地的关系。所谓价值性的因果关系是指主观性存在所引起的先后相继如自认为出现的风马牛也相及事件如我思故我在、喜鹊叫好事到等。在同一个情境中不同的人为什么常常会有不同的态势感知、处理、决策、评估方案究其因面对客观知识中的对象、属性、关系每个人动物心目中的价值往往不同狗认为好的东西人认为不好张三觉得《银河补习班》中的父子很不错而李四却认为《哪吒之魔童降世》中的父子更有意思……事实是高维空间价值是低维空间因果关系就是一个降维过程是由人找到且梳理出的一种关系具体反映在智能的灵活运用上进而发现、发明了AI这一工具并使之不断改造着主客观世界系统。5. 结束语在西方伦理学界一般认为伦理学的基本问题有两个基准一个是我们应该如何行动另一个是我们应该成为什么样的人前者以行为为中心属于规范伦理学研究范畴也是休谟之问的should问题后者以行为者为中心属于美德伦理学研究范畴也是休谟之问的being问题。这与智能生成的基本问题“事实与价值能否相符”是一致的。智能的生成将涉及到主观目的与行为动机并与情境中的客观事实变化密切相关。产生智能不仅需要形式化的计算更需要意识性的类比。掌握事实性与价值性的因果关系深入研究人机融合智能开展深度态势感知将是智能研究的重大突破。本文图片选自徐阳、韦兆民及本实验室摄影作品、维特根斯坦手稿、电影《星际穿越》画报