当前位置: 首页 > news >正文

网站建设方案书 模版公司制作网站收费标准

网站建设方案书 模版,公司制作网站收费标准,网站建设与制作实训报告,游戏卡充值可以做网站吗基于小土堆学习 如何把数据集和Transform结合袭来 https://pytorch.org/ 上述网址是pytorch的官网 这里会有详细的使用介绍 下述是对图像处理的专门文档 单击后可查看详细介绍 选择CIFAR10数据集 CIFAR10 数据集是一个广泛使用的计算机视觉数据集#xff0c;包含了60000…基于小土堆学习 如何把数据集和Transform结合袭来 https://pytorch.org/ 上述网址是pytorch的官网 这里会有详细的使用介绍 下述是对图像处理的专门文档 单击后可查看详细介绍 选择CIFAR10数据集 CIFAR10 数据集是一个广泛使用的计算机视觉数据集包含了60000张32x32的彩色图像这些图像分为10个类别每个类别6000张图像。这些数据集被分为50000张训练图像和10000张测试图像。 参数解释如下 -rootstr或pathlib.Path数据集的根目录其中应存在cifar-10-batches-py目录或者如果设置download为True则会在此目录下下载并保存数据集。-trainbool可选如果为True则从训练集创建数据集否则从测试集创建数据集。-transformcallable可选一个函数/变换它接受一个PIL图像并返回变换后的版本。例如transforms.RandomCrop。-target_transformcallable可选一个函数/变换它接受目标标签并对其进行变换。-downloadbool可选如果为True则从互联网下载数据集并将其放在根目录中。如果数据集已经下载则不会再次下载。 import torchvision train_set torchvision.datasets.CIFAR10(root./CIFAR,trainTrue,downloadTrue) test_set torchvision.datasets.CIFAR10(root./CIFAR,trainFalse,downloadTrue) #下载训练集和测试机print(test_set[0])#获取数据类型 print(test_set.classes,test_set.classes)#获取分类目标img,target test_set[0] print(img:,img) print(target:,target) #输出结果target: 3对应类别0,1,2,3也就是当前类别是猫cat print(test_set.classesp[target]当前类型为,test_set.classes[target]) img.show()运行结果为 C:\Anaconda3\envs\pytorch_test\python.exe H:\Python\Test\P10_dataset_transforms.py Files already downloaded and verified Files already downloaded and verified (PIL.Image.Image image modeRGB size32x32 at 0x21F676692D0, 3) test_set.classes [airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck] img: PIL.Image.Image image modeRGB size32x32 at 0x21F6A68E560 target: 3 test_set.classesp[target]当前类型为 cat进程已结束,退出代码0 数据集全部转换为tensor数据类型 import torchvisiondataset_transform torchvision.transforms.Compose([torchvision.transforms.ToTensor() ])train_set torchvision.datasets.CIFAR10(root./CIFAR,trainTrue,transformdataset_transform,downloadTrue) test_set torchvision.datasets.CIFAR10(root./CIFAR,trainFalse,transformdataset_transform,downloadTrue) #transformdataset_transform,将数据集中的每个数据都转换为Tensor格式 #下载训练集和测试机print(test_set[0])#获取数据类型 print(test_set.classes,test_set.classes)#获取分类目标img,target test_set[0] print(img:,img) print(target:,target) #输出结果target: 3对应类别0,1,2,3也就是当前类别是猫cat print(test_set.classesp[target]当前类型为,test_set.classes[target]) 输出结果为 C:\Anaconda3\envs\pytorch_test\python.exe H:\Python\Test\P10_dataset_transforms.py Files already downloaded and verified Files already downloaded and verified (tensor([[[0.6196, 0.6235, 0.6471, ..., 0.5373, 0.4941, 0.4549],[0.5961, 0.5922, 0.6235, ..., 0.5333, 0.4902, 0.4667],[0.5922, 0.5922, 0.6196, ..., 0.5451, 0.5098, 0.4706],...,[0.2667, 0.1647, 0.1216, ..., 0.1490, 0.0510, 0.1569],[0.2392, 0.1922, 0.1373, ..., 0.1020, 0.1137, 0.0784],[0.2118, 0.2196, 0.1765, ..., 0.0941, 0.1333, 0.0824]],[[0.4392, 0.4353, 0.4549, ..., 0.3725, 0.3569, 0.3333],[0.4392, 0.4314, 0.4471, ..., 0.3725, 0.3569, 0.3451],[0.4314, 0.4275, 0.4353, ..., 0.3843, 0.3725, 0.3490],...,[0.4863, 0.3922, 0.3451, ..., 0.3804, 0.2510, 0.3333],[0.4549, 0.4000, 0.3333, ..., 0.3216, 0.3216, 0.2510],[0.4196, 0.4118, 0.3490, ..., 0.3020, 0.3294, 0.2627]],[[0.1922, 0.1843, 0.2000, ..., 0.1412, 0.1412, 0.1294],[0.2000, 0.1569, 0.1765, ..., 0.1216, 0.1255, 0.1333],[0.1843, 0.1294, 0.1412, ..., 0.1333, 0.1333, 0.1294],...,[0.6941, 0.5804, 0.5373, ..., 0.5725, 0.4235, 0.4980],[0.6588, 0.5804, 0.5176, ..., 0.5098, 0.4941, 0.4196],[0.6275, 0.5843, 0.5176, ..., 0.4863, 0.5059, 0.4314]]]), 3) test_set.classes [airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck] img: tensor([[[0.6196, 0.6235, 0.6471, ..., 0.5373, 0.4941, 0.4549],[0.5961, 0.5922, 0.6235, ..., 0.5333, 0.4902, 0.4667],[0.5922, 0.5922, 0.6196, ..., 0.5451, 0.5098, 0.4706],...,[0.2667, 0.1647, 0.1216, ..., 0.1490, 0.0510, 0.1569],[0.2392, 0.1922, 0.1373, ..., 0.1020, 0.1137, 0.0784],[0.2118, 0.2196, 0.1765, ..., 0.0941, 0.1333, 0.0824]],[[0.4392, 0.4353, 0.4549, ..., 0.3725, 0.3569, 0.3333],[0.4392, 0.4314, 0.4471, ..., 0.3725, 0.3569, 0.3451],[0.4314, 0.4275, 0.4353, ..., 0.3843, 0.3725, 0.3490],...,[0.4863, 0.3922, 0.3451, ..., 0.3804, 0.2510, 0.3333],[0.4549, 0.4000, 0.3333, ..., 0.3216, 0.3216, 0.2510],[0.4196, 0.4118, 0.3490, ..., 0.3020, 0.3294, 0.2627]],[[0.1922, 0.1843, 0.2000, ..., 0.1412, 0.1412, 0.1294],[0.2000, 0.1569, 0.1765, ..., 0.1216, 0.1255, 0.1333],[0.1843, 0.1294, 0.1412, ..., 0.1333, 0.1333, 0.1294],...,[0.6941, 0.5804, 0.5373, ..., 0.5725, 0.4235, 0.4980],[0.6588, 0.5804, 0.5176, ..., 0.5098, 0.4941, 0.4196],[0.6275, 0.5843, 0.5176, ..., 0.4863, 0.5059, 0.4314]]]) target: 3 test_set.classesp[target]当前类型为 cat进程已结束,退出代码0 继续用Tensorboard进行图片的显示显示前20张图片 import torchvision from torch.utils.tensorboard import SummaryWriterdataset_transform torchvision.transforms.Compose([torchvision.transforms.ToTensor() ])train_set torchvision.datasets.CIFAR10(root./CIFAR,trainTrue,transformdataset_transform,downloadTrue) test_set torchvision.datasets.CIFAR10(root./CIFAR,trainFalse,transformdataset_transform,downloadTrue) #transformdataset_transform,将数据集中的每个数据都转换为Tensor格式 #下载训练集和测试机# print(test_set[0])#获取数据类型 # print(test_set.classes,test_set.classes)#获取分类目标 # # img,target test_set[0] # print(img:,img) # print(target:,target) # #输出结果target: 3对应类别0,1,2,3也就是当前类别是猫cat # print(test_set.classesp[target]当前类型为,test_set.classes[target]) write SummaryWriter(logs) for i in range(20):img, target test_set[i]write.add_image(img, img, i) write.close()结果为 C:\Anaconda3\envs\pytorch_test\python.exe H:\Python\Test\P10_dataset_transforms.py Files already downloaded and verified Files already downloaded and verified进程已结束,退出代码0 local的结果 **(pytorch_test) PS H:\Python\Test tensorboard --logdir logs --port6007 TensorFlow installation not found - running with reduced feature set. Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all TensorBoard 2.17.1 at http://localhost:6007/ (Press CTRLC to quit) **拖动可以查看20张图片
http://www.zqtcl.cn/news/435065/

相关文章:

  • 福州企业网站html模板网站模板下载
  • 湛江自做网站城乡住建局官网
  • 广东网站建设找自己做网站还有出路吗
  • wordpress后台管理地址更改班级优化大师怎么用
  • 电脑网站开发学习产品怎么做市场推广
  • 上海市网站建设公叿目前流行的app网站开发模式
  • 企业手机网站建设效果wordpress栏目链接地址
  • 产品经理做网站网络公司名字免费起名大全
  • 做得比较好的公司网站kol营销
  • 百度指数分析平台长春seo优化企业网络跃升
  • 如何免费做网站域名wordpress 赚钱
  • 苏州市住房建设局网站首页温州网站设计公司
  • 网站模板哪个好用汕头建设工程总公司
  • iis网站重定向软件开发培训机构排名
  • 浙江大学教室办事大厅网站建设网页棋牌搭建
  • 长沙市天心区建设局网站新河网站
  • 网站改版 升级的目的嘉兴海盐县城乡建设局网站
  • 网站建设一年多少钱上海工程建设交易信息网站
  • 网站推广到底应该怎么做中国建设银行网上登录入口
  • 东莞网站建设服务商wordpress页面样式
  • 亿星网站建设创业网站怎么做
  • 绿韵建设有限公司网站重庆景点分布图
  • 咨询类网站模板wordpress怎样切换语言
  • 大连网站建设与维护题库网站建设目标是
  • 威海网站开发询广西南宁网站运营
  • 网站的素材做logo长沙专业的网站建设企业
  • 网站显示速度的代码是什么情况专门做中式服装平台的网站
  • 驻马店做网站的公司大连网站模板建站
  • aso如何优化网站优化分析软件
  • IT周末做网站违反制度么wordpress 图床 插件