当前位置: 首页 > news >正文

网站建设框架做网站和网页的目的和作用是什么

网站建设框架,做网站和网页的目的和作用是什么,做系统去哪个网站,深圳在线直播电视聚类算法—k-Means实验 k-平均#xff08;k-Means#xff09;#xff0c;也被称为k-均值#xff0c;是一种得到最广泛使用的聚类算法[1]. k-Means算法以k为参数#xff0c;把n个对象分为k个簇#xff0c;使得簇内具有较高的相似度。 实验目的 了解常用聚类算法及其优缺…聚类算法—k-Means实验 k-平均k-Means也被称为k-均值是一种得到最广泛使用的聚类算法[1]. k-Means算法以k为参数把n个对象分为k个簇使得簇内具有较高的相似度。 实验目的 了解常用聚类算法及其优缺点掌握k-Means聚类算法对数据进行聚类分析的基本原理和划分方法利用k-Means聚类算法对数据集进行聚类实验熟悉使用Matlab进行算法的实现。 聚类算法的主要思想 主要思想 给定一个有n个对象的数据集划分聚类技术将构造数据k个划分每一个划分就代表一个簇k≤nk\le nk≤n. 每一个簇至少包含一个对象每一个对象属于且仅属于一个簇。 对于给定的k算法首先给出一个初始的划分方法以后通过反复迭代的方法改变划分使得每一次改进之后的划分较前一次更好。 评价函数 更好的标准是同一簇中的对象越接近越好而不同簇中的对象越远越好目标是最小化所有对象与其簇中心之间相异度之和。 各个簇应该是紧凑的各个簇间的距离应当尽可能远。因此用聚类C的类内差异Within cluster variationw(C)w(C)w(C) 和类间差异Between cluster variationb(C)b(C)b(C) 分别衡量上述两要求。 w(C)∑i1kw(Ci)∑i1k∑x∈Cid(x,xi‾)2w(C)\sum_{i1}^{k}w(C_i)\sum_{i1}^{k}\sum_{x\in C_i}d(x,\overline{x_i})^2w(C)i1∑k​w(Ci​)i1∑k​x∈Ci​∑​d(x,xi​​)2 b(C)∑1≤j≤i≤kd(xj‾,xi‾)2b(C)\sum_{1\le j\le i\le k}d(\overline{x_j},\overline{x_i})^2b(C)1≤j≤i≤k∑​d(xj​​,xi​​)2 其中xi‾\overline{x_i}xi​​ 是类 CiC_iCi​ 的聚类中心d 为距离函数。聚类C的总体质量可以被定义为 b(C)w(C)\frac{b(C)}{w(C)}w(C)b(C)​. k-Means算法原理 k-Means算法用类内均值作为聚类中心、用欧氏距离定义d并使上述 w(C)w(C)w(C) 最小化。 优化目标 arg⁡max⁡C∑i1k∑x∈Ci∥x−xi‾∥2\mathop{\arg\max}\limits_{C} \sum_{i1}^k \sum_{x\in C_i} \parallel x-\overline{x_i}\parallel ^2Cargmax​i1∑k​x∈Ci​∑​∥x−xi​​∥2 表示选取合适的C使得所有对象的平方误差总和最小其中x是空间中的点xi‾\overline{x_i}xi​​ 是簇 CiC_iCi​ 的平均值这个优化目标可以保证生成的结果簇尽可能的紧凑和独立。 算法描述 首先随机选择k个对象每个对象初始地代表了一个簇的平均值或中心。对剩余的每个对象根据其与各个簇中心的距离将它赋给最近的簇。然后重新计算每个簇的平均值。这个过程不断重复直到上述平方误差总和收敛。 k-Means算法分析 优点 对处理大数据集该算法是相对可伸缩和高效率的时间复杂度约为 O(k⋅n⋅t)\mathcal{O} (k\cdot n\cdot t)O(k⋅n⋅t)t是迭代次数。k-Means算法经常以局部最优结束算法尝试找出使平方误差最小的k个划分当结果簇是密集的而簇与簇之间区别明显时k-Means的效果较好。 缺点 若涉及离散属性其平均值无法定义无法使用k-Means聚类必须事先给出参数kk的选取对聚类质量和效果影响很大k-Means算法不适合发现非凸面形状的簇或者大小差别很大的簇。而且对于“噪声”和孤立点数据是敏感的少量的该类数据对平均值产生较大影响。 算法改进 k-模算法将k-Means的应用扩大到离散数据。k-原型可以对离散与数值属性两种混合的数据进行聚类在k-原型中定义了一个对数值与离散属性都计算的相异性度量标准。[2] k-中心点算法解决了k-Means算法对孤立点敏感的问题不采用簇中的平均值作为参照点而使用簇中位置最靠近中心的对象作为参照点。基本思路是反复用非代表对象来替代代表对象以改进聚类的质量。PAMPartition Around Medoid是最早提出的k-中心点算法之一。[3] 代码 clc;clear; k 2; data [1 1; 2 1; 1 2; 2 2; 4 3; 5 3; 4 4; 5 4;]; eps 0.1; epochs 100; [n,~] size(data); % initialize the last column of data as classes data(:,end1) 0; % assign initial value for means rng(default) % For reproducibility clusters data(randperm(n,k),1:end-1); % initialize E E inf; % save means steps cnt 0; % counter cls_steps []; while epochs0% to save means stepscnt cnt 1;cT clusters;cls_steps(cnt,:) cT(:);% assign each xj to the cluster which has the closet meanD pdist2(data(:,1:end-1),clusters);[~,I] min(D);data(:,end) I;% calculate new means for each classesclusters grpstats(data(:,1:end-1),data(:,end));% calculate criterion function ElastE E;E .0;for i1:nE E pdist2(data(i,1:end-1),clusters(data(i,end),:));endif lastE-Eepsbreakendepochs epochs - 1; endMatlab2021a 结果验证 结果数据 在data.csv数据集上运行上述代码得到结果如下 Clusters: 聚类中心 x1x21.51.54.53.5 E 5.65685424949238 cls_steps: 聚类中心移动记录 c1x1c1x2c2x1c2x243532.333333332.1666666753.51.51.54.53.5 结果图像 其中蓝色/黄色实心点表示不同分类下的数据点空心橙色/紫色圆环表示k-Means聚类中心的变化情况。 附录data.csv IndexAttr1Attr2111221312422543653744854 参考 毛国君、段立娟, 《数据挖掘原理与算法》, 清华大学出版社, 2016-01-01, ISBN9787302415817Ramasubramanian P , Kumar S P , Anandam D . Experimental work on Data Clustering using Enhanced Random KMode Algorithm. 2020.Bhat A . K-Medoids Clustering Using Partitioning Around Medoids for Performing Face Recognition. 2014.
http://www.zqtcl.cn/news/983437/

相关文章:

  • wordpress网站云备份网站模块插件是怎么做的
  • 郑州市城乡建设规划网站深圳十佳设计公司排名
  • 上海建设项目环保验收公示网站两新支部网站建设
  • 网站开发移动端网络系统软件应用与维护
  • 浙江网站建设营销网站后台管理系统一般用户名是什么
  • 网站 空间 租用wordpress搬家需要修改
  • 做网站推广怎么找客户网站换空间 seo
  • ipad网站开发seo哪家强
  • 昆明网站建设猫咪科技公司资料模板
  • 网站系统开发做网站需要填什么
  • 网站的数据库丢失建筑素材网
  • 个人网站做短视频pathon能做网站开发吗
  • 客户网站制作管理系统网站程序 wap pc 同步
  • 天津手动网站建设调试百度医院网站建设
  • ppt网站源码今天哈尔滨最新通告
  • asp网站乱码广州制作网页设计
  • 调用别人网站的数据库如何开网店卖自己的东西
  • 个人网站做影视网站开发学什么专业
  • 企业名称注册查询官网入口免费seo网站推广
  • 浙江门户网站建设公司个体工商户查询
  • 做网站的注意点赛事竞猜网站开发
  • 现在流行用什么语言做网站ppt设计教程网
  • 高端网站哪种好培训机构不退钱最怕什么举报
  • 青岛个人建站模板wordpress没有链接
  • 网上学习网站有哪些厦门城乡建设局网站
  • 怎样创建网站快捷方式个人制作一个网站的费用
  • 恒信在线做彩票的是什么样的网站软件开发流程管理
  • 网站服务器地址在哪里看艺术学校网站模板
  • 郑州中心站网站建设价格标准新闻
  • 电子商务网站管理互联网营销师主要做什么