当前位置: 首页 > news >正文

龙华区住房和建设局网站官网怎么做英文版网站

龙华区住房和建设局网站官网,怎么做英文版网站,宁国市网站关键词优化外包,浏览器在线打开网页传统的基于特征提取与分类相结合的轴承智能诊断算法#xff0c;对信号处理要求很高的专家经验#xff0c;既费时又缺乏通用性。基于深度学习的智能轴承故障诊断方由于具有强大的特征提取能力#xff0c;避免了繁琐复杂的特征提取工作#xff0c;但是大多数研究都是在标准数…传统的基于特征提取与分类相结合的轴承智能诊断算法对信号处理要求很高的专家经验既费时又缺乏通用性。基于深度学习的智能轴承故障诊断方由于具有强大的特征提取能力避免了繁琐复杂的特征提取工作但是大多数研究都是在标准数据集下进行的这意味着模型能够使用足量的数据进行训练因此不会出现由于缺乏训练数据而导致深度模型诊断错误或过拟合问题。但是在某些实际情况下很难收集到足够的数据例如当突然的故障发生时在系统关闭前只能获取少量样本来自这些故障的数据是稀缺的。出现这种情况的原因有几个 1由于严重的后果不允许行轴承陷入故障状态2大多数轴承故障发生缓慢并遵循退化路径使得轴承的故障退化可能需要数月甚至数年这使得收集相关数据集变得困难3机械设备的工况非常复杂收集和标记足够各种工况下的训练样本是不现实的4在实际应用中故障类别和工作条件通常是不平衡的。以上数据不足或数据不平衡问题故障样本都比较少即为小样本问题。 为了解决小样本轴承故障诊断问题现有的方法主要分为两个方面 1数据增强2选择特定算法。对于传统的数据增强方法而言这些方法能增加数据量但数据多样性没有发生质的改变因此诊断效果有待提升同时这些方法可能引入噪声样本也可能剔除重要的样本信息。生成对抗网络的出现弥补了上述方法的不足用于轴承故障诊断获得了良好的结果但目前它们都是基于一维信号的故障诊断方法不能充分学习GAN及其变种图像生成的能力生成样本质量不高和多样性差同时没有充分利用振动信号的时域和频域信息。对于现有的特定小样本轴承故障诊断算法而言这些方法过分依赖丰富的人工经验以及出现新的故障类型时不能直接进行诊断而需要收集足够的新的故障类型样本输入模型重新训练再进行诊断。 鉴于此提出一种基于注意力机制的小样本轴承故障诊断方法运行环境为Python采用Pytorch深度学习模块采用模块如下 import torch import torch.nn as nn import numpy as np from datasave import train_loader, test_loader from early_stopping import EarlyStopping from label_smoothing import LSR from oneD_Meta_ACON import MetaAconC import time from torchsummary import summary from adabn import reset_bn, fix_bn 运行结果如下 epoch: 70, Train Loss: 0.5524, Train Acc: 1.0000, Test Loss: 0.5565, Test Acc: 1.0000 EarlyStopping counter: 2 out of 10 epoch: 71, Train Loss: 0.5525, Train Acc: 1.0000, Test Loss: 0.5552, Test Acc: 1.0000 Validation loss decreased (0.555630 -- 0.555175). Saving model ... epoch: 72, Train Loss: 0.5519, Train Acc: 1.0000, Test Loss: 0.5584, Test Acc: 1.0000 EarlyStopping counter: 1 out of 10 epoch: 73, Train Loss: 0.5517, Train Acc: 1.0000, Test Loss: 0.5550, Test Acc: 1.0000 Validation loss decreased (0.555175 -- 0.555048). Saving model ... epoch: 74, Train Loss: 0.5514, Train Acc: 1.0000, Test Loss: 0.5544, Test Acc: 1.0000 Validation loss decreased (0.555048 -- 0.554380). Saving model ... epoch: 75, Train Loss: 0.5516, Train Acc: 1.0000, Test Loss: 0.5560, Test Acc: 1.0000 EarlyStopping counter: 1 out of 10 epoch: 76, Train Loss: 0.5508, Train Acc: 1.0000, Test Loss: 0.5542, Test Acc: 1.0000 Validation loss decreased (0.554380 -- 0.554152). Saving model ... epoch: 77, Train Loss: 0.5507, Train Acc: 1.0000, Test Loss: 0.5546, Test Acc: 1.0000 EarlyStopping counter: 1 out of 10 epoch: 78, Train Loss: 0.5506, Train Acc: 1.0000, Test Loss: 0.5546, Test Acc: 1.0000 EarlyStopping counter: 2 out of 10 epoch: 79, Train Loss: 0.5505, Train Acc: 1.0000, Test Loss: 0.5541, Test Acc: 1.0000 Validation loss decreased (0.554152 -- 0.554113). Saving model ... epoch: 80, Train Loss: 0.5503, Train Acc: 1.0000, Test Loss: 0.5536, Test Acc: 1.0000 Validation loss decreased (0.554113 -- 0.553636). Saving model ... epoch: 81, Train Loss: 0.5501, Train Acc: 1.0000, Test Loss: 0.5534, Test Acc: 1.0000 Validation loss decreased (0.553636 -- 0.553374). Saving model ... epoch: 82, Train Loss: 0.5501, Train Acc: 1.0000, Test Loss: 0.5536, Test Acc: 1.0000 EarlyStopping counter: 1 out of 10 epoch: 83, Train Loss: 0.5500, Train Acc: 1.0000, Test Loss: 0.5542, Test Acc: 1.0000 EarlyStopping counter: 2 out of 10 epoch: 84, Train Loss: 0.5507, Train Acc: 1.0000, Test Loss: 0.5554, Test Acc: 1.0000 EarlyStopping counter: 3 out of 10 epoch: 85, Train Loss: 0.5499, Train Acc: 1.0000, Test Loss: 0.5531, Test Acc: 1.0000 Validation loss decreased (0.553374 -- 0.553104). Saving model ... epoch: 86, Train Loss: 0.5499, Train Acc: 1.0000, Test Loss: 0.5527, Test Acc: 1.0000 Validation loss decreased (0.553104 -- 0.552698). Saving model ... epoch: 87, Train Loss: 0.5498, Train Acc: 1.0000, Test Loss: 0.5531, Test Acc: 1.0000 EarlyStopping counter: 1 out of 10 epoch: 88, Train Loss: 0.5493, Train Acc: 1.0000, Test Loss: 0.5532, Test Acc: 1.0000 EarlyStopping counter: 2 out of 10 epoch: 89, Train Loss: 0.5495, Train Acc: 1.0000, Test Loss: 0.5523, Test Acc: 1.0000 Validation loss decreased (0.552698 -- 0.552310). Saving model ... epoch: 90, Train Loss: 0.5494, Train Acc: 1.0000, Test Loss: 0.5531, Test Acc: 1.0000 EarlyStopping counter: 1 out of 10 epoch: 91, Train Loss: 0.5492, Train Acc: 1.0000, Test Loss: 0.5538, Test Acc: 1.0000 EarlyStopping counter: 2 out of 10 epoch: 92, Train Loss: 0.5492, Train Acc: 1.0000, Test Loss: 0.5529, Test Acc: 1.0000 EarlyStopping counter: 3 out of 10 epoch: 93, Train Loss: 0.5491, Train Acc: 1.0000, Test Loss: 0.5526, Test Acc: 1.0000 EarlyStopping counter: 4 out of 10 epoch: 94, Train Loss: 0.5489, Train Acc: 1.0000, Test Loss: 0.5529, Test Acc: 1.0000 EarlyStopping counter: 5 out of 10 epoch: 95, Train Loss: 0.5487, Train Acc: 1.0000, Test Loss: 0.5528, Test Acc: 1.0000 EarlyStopping counter: 6 out of 10 epoch: 96, Train Loss: 0.5484, Train Acc: 1.0000, Test Loss: 0.5528, Test Acc: 1.0000 EarlyStopping counter: 7 out of 10 epoch: 97, Train Loss: 0.5485, Train Acc: 1.0000, Test Loss: 0.5517, Test Acc: 1.0000 Validation loss decreased (0.552310 -- 0.551687). Saving model ... epoch: 98, Train Loss: 0.5484, Train Acc: 1.0000, Test Loss: 0.5514, Test Acc: 1.0000 Validation loss decreased (0.551687 -- 0.551363). Saving model ... epoch: 99, Train Loss: 0.5484, Train Acc: 1.0000, Test Loss: 0.5515, Test Acc: 1.0000 EarlyStopping counter: 1 out of 10 epoch: 100, Train Loss: 0.5483, Train Acc: 1.0000, Test Loss: 0.5524, Test Acc: 1.0000 EarlyStopping counter: 2 out of 10 epoch: 101, Train Loss: 0.5487, Train Acc: 1.0000, Test Loss: 0.5549, Test Acc: 1.0000 EarlyStopping counter: 3 out of 10 epoch: 102, Train Loss: 0.5507, Train Acc: 1.0000, Test Loss: 0.5597, Test Acc: 1.0000 EarlyStopping counter: 4 out of 10 epoch: 103, Train Loss: 0.5495, Train Acc: 1.0000, Test Loss: 0.5540, Test Acc: 1.0000 EarlyStopping counter: 5 out of 10 epoch: 104, Train Loss: 0.5586, Train Acc: 0.9972, Test Loss: 0.5980, Test Acc: 1.0000 EarlyStopping counter: 6 out of 10 epoch: 105, Train Loss: 0.5563, Train Acc: 1.0000, Test Loss: 0.6087, Test Acc: 0.9900 EarlyStopping counter: 7 out of 10 epoch: 106, Train Loss: 0.5541, Train Acc: 1.0000, Test Loss: 0.6079, Test Acc: 1.0000 EarlyStopping counter: 8 out of 10 epoch: 107, Train Loss: 0.5515, Train Acc: 1.0000, Test Loss: 0.5953, Test Acc: 0.9967 EarlyStopping counter: 9 out of 10 epoch: 108, Train Loss: 0.5503, Train Acc: 1.0000, Test Loss: 0.5740, Test Acc: 0.9967 EarlyStopping counter: 10 out of 10 Early stopping time1384.973 s完整代码Python环境下基于注意力机制的小样本轴承故障诊断-今日头条 (toutiao.com) 擅长领域现代信号处理机器学习深度学习数字孪生时间序列分析设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
http://www.zqtcl.cn/news/649641/

相关文章:

  • 官方网站娱乐游戏城自己做网站的好处
  • 查询建设规范的网站1元网站建设精品网站制作
  • 社交网站的优点和缺点个人网页制作软件
  • 做一家算命的网站有没有专门做淘宝客的网站
  • 网站站点管理在哪里建筑施工图设计
  • 众筹网站开发周期网页云原神
  • 哪些网站可以免费做h5东莞制作企业网站
  • 帝国cms 网站地址设置深圳住房和建设部网站
  • 专业网站建设价格最优网页游戏大全电脑版在线玩
  • 建设租车网站wordpress+js插件开发
  • 定制网站开发与模板商务酒店设计网站建设
  • php 网站部署后乱码wordpress禁止调用头部
  • 网站权重低营销型企业网站建站
  • 大港油田建设网站长春市网站优化公司
  • 嘉峪关市建设局建管科资质网站室内设计入门教程
  • 久久建筑网会员登陆中心百度的搜索引擎优化
  • 做网站好还是做程序员好wordpress new图标
  • 秀洲住房与建设局网站徐州建设工程招投标官方网站
  • 做公司网站要注意哪些问题做章的网站
  • 南京建设网站维护洛阳最新通告今天
  • 网站名称创意大全wordpress公开课插件
  • 淮安市城市建设档案馆网站可以做网页的软件
  • 网站空间服务器wordpress 排除置顶文章
  • 有域名后怎么做网站邯郸做移动网站的地方
  • 商标可以做网站吗网站开发的大学生应届简历
  • 长沙长沙网站建设公司saas系统架构
  • 成都销售型网站长春财经学院多大
  • 手机自己制作表白网站app项目网络计划图怎么画
  • 品牌网站如何做seo浏览器正能量网址
  • 开封做网站哪家好网页设计制作网站大一素材