当前位置: 首页 > news >正文

怎么找需要做网站的客户电商网站建设的目的跟意义

怎么找需要做网站的客户,电商网站建设的目的跟意义,秦皇岛住建局官网,厚瑜珠海网站建设from:https://blog.csdn.net/qq_25491201/article/details/51135054 下面这个教程我们将学会怎么用KdTree找一个特殊点附近的K个最近邻#xff0c;然后我们也将复习怎么通过一个特殊的半径来找里面所有的近邻。 一个k-d树#xff0c;或者k维的树是一个计算机科学里面的数据…from:https://blog.csdn.net/qq_25491201/article/details/51135054 下面这个教程我们将学会怎么用KdTree找一个特殊点附近的K个最近邻然后我们也将复习怎么通过一个特殊的半径来找里面所有的近邻。 一个k-d树或者k维的树是一个计算机科学里面的数据结构。它是一个有其它约束影响的二叉搜索树。K-d树是在深度和最近邻搜索里面很有用的。我们这次的目的是生成一个3维的k-d trees。一个k-d tree的每个层次在某个维度上分割成所有的子树使用一个垂直于相应坐标轴的高维平面。在树的根部所有的子树将会被分割以第一维(如果第一维坐标系比根部少它将会成为左子树如果比根部多它将会成为右子树)。每一层的树将会在下一层进行分叉它会跳转到第一层如果全部都分完了。最有效的去建立k-d tree的方法是使用一个分割的方法就像快速排序。你可以在你的左子树和右子树上重复这一过程直到最后一个你要去分割的树只有一个元素。 2维的k-d树 下面是一个最近邻搜索的工作 代码 #include pcl/point_cloud.h #include pcl/kdtree/kdtree_flann.h #include iostream #include vector #include ctime int main (int argc, char** argv) {   srand (time (NULL)); pcl::PointCloudpcl::PointXYZ::Ptr cloud (new pcl::PointCloudpcl::PointXYZ); // Generate pointcloud data   cloud-width 1000;   cloud-height 1;   cloud-points.resize (cloud-width * cloud-height); for (size_t i 0; i cloud-points.size (); i)   {     cloud-points[i].x 1024.0f * rand () / (RAND_MAX 1.0f);     cloud-points[i].y 1024.0f * rand () / (RAND_MAX 1.0f);     cloud-points[i].z 1024.0f * rand () / (RAND_MAX 1.0f);   } pcl::KdTreeFLANNpcl::PointXYZ kdtree; kdtree.setInputCloud (cloud); pcl::PointXYZ searchPoint; searchPoint.x 1024.0f * rand () / (RAND_MAX 1.0f);   searchPoint.y 1024.0f * rand () / (RAND_MAX 1.0f);   searchPoint.z 1024.0f * rand () / (RAND_MAX 1.0f); // K nearest neighbor search int K 10; std::vectorint pointIdxNKNSearch(K);   std::vectorfloat pointNKNSquaredDistance(K); std::cout K nearest neighbor search at ( searchPoint.x              searchPoint.y              searchPoint.z             ) with K K std::endl; if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) 0 )   {     for (size_t i 0; i pointIdxNKNSearch.size (); i)       std::cout         cloud-points[ pointIdxNKNSearch[i] ].x                  cloud-points[ pointIdxNKNSearch[i] ].y                  cloud-points[ pointIdxNKNSearch[i] ].z                  (squared distance: pointNKNSquaredDistance[i] ) std::endl;   } // Neighbors within radius search std::vectorint pointIdxRadiusSearch;   std::vectorfloat pointRadiusSquaredDistance; float radius 256.0f * rand () / (RAND_MAX 1.0f); std::cout Neighbors within radius search at ( searchPoint.x              searchPoint.y              searchPoint.z             ) with radius radius std::endl; if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) 0 )   {     for (size_t i 0; i pointIdxRadiusSearch.size (); i)       std::cout         cloud-points[ pointIdxRadiusSearch[i] ].x                  cloud-points[ pointIdxRadiusSearch[i] ].y                  cloud-points[ pointIdxRadiusSearch[i] ].z                  (squared distance: pointRadiusSquaredDistance[i] ) std::endl;   } return 0; } 下面的代码是创造了kdtree这个对象并把我们随机生成的点云作为输入。 pcl::KdTreeFLANNpcl::PointXYZ kdtree; kdtree.setInputCloud (cloud); pcl::PointXYZ searchPoint; searchPoint.x 1024.0f * rand () / (RAND_MAX 1.0f);   searchPoint.y 1024.0f * rand () / (RAND_MAX 1.0f);   searchPoint.z 1024.0f * rand () / (RAND_MAX 1.0f); 我们接下去创造了一个整数(通常设置为10)和两个向量存储搜索后的K个最近邻。 // K nearest neighbor search int K 10; std::vectorint pointIdxNKNSearch(K);   std::vectorfloat pointNKNSquaredDistance(K); std::cout K nearest neighbor search at ( searchPoint.x              searchPoint.y              searchPoint.z             ) with K K std::endl; 假设我们的kdtree返回了大于0个近邻。那么它将打印出在我们searchPoint附近的10个最近的邻居并把它们存到先前创立的向量中。 if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) 0 )   {     for (size_t i 0; i pointIdxNKNSearch.size (); i)       std::cout         cloud-points[ pointIdxNKNSearch[i] ].x                  cloud-points[ pointIdxNKNSearch[i] ].y                  cloud-points[ pointIdxNKNSearch[i] ].z                  (squared distance: pointNKNSquaredDistance[i] ) std::endl;   }  // Neighbors within radius search std::vectorint pointIdxRadiusSearch;   std::vectorfloat pointRadiusSquaredDistance; float radius 256.0f * rand () / (RAND_MAX 1.0f); 我们把向量里面的点打印出来 if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) 0 )   {     for (size_t i 0; i pointIdxRadiusSearch.size (); i)       std::cout         cloud-points[ pointIdxRadiusSearch[i] ].x                  cloud-points[ pointIdxRadiusSearch[i] ].y                  cloud-points[ pointIdxRadiusSearch[i] ].z                  (squared distance: pointRadiusSquaredDistance[i] ) std::endl;   } 结果 K nearest neighbor search at (455.807 417.256 406.502) with K10   494.728 371.875 351.687 (squared distance: 6578.99)   506.066 420.079 478.278 (squared distance: 7685.67)   368.546 427.623 416.388 (squared distance: 7819.75)   474.832 383.041 323.293 (squared distance: 8456.34)   470.992 334.084 468.459 (squared distance: 10986.9)   560.884 417.637 364.518 (squared distance: 12803.8)   466.703 475.716 306.269 (squared distance: 13582.9)   456.907 336.035 304.529 (squared distance: 16996.7)   452.288 387.943 279.481 (squared distance: 17005.9)   476.642 410.422 268.057 (squared distance: 19647.9) Neighbors within radius search at (455.807 417.256 406.502) with radius225.932   494.728 371.875 351.687 (squared distance: 6578.99)   506.066 420.079 478.278 (squared distance: 7685.67)   368.546 427.623 416.388 (squared distance: 7819.75)   474.832 383.041 323.293 (squared distance: 8456.34)   470.992 334.084 468.459 (squared distance: 10986.9)   560.884 417.637 364.518 (squared distance: 12803.8)   466.703 475.716 306.269 (squared distance: 13582.9)   456.907 336.035 304.529 (squared distance: 16996.7)   452.288 387.943 279.481 (squared distance: 17005.9)   476.642 410.422 268.057 (squared distance: 19647.9)   499.429 541.532 351.35 (squared distance: 20389)   574.418 452.961 334.7 (squared distance: 20498.9)   336.785 391.057 488.71 (squared distance: 21611)   319.765 406.187 350.955 (squared distance: 21715.6)   528.89 289.583 378.979 (squared distance: 22399.1)   504.509 459.609 541.732 (squared distance: 22452.8)   539.854 349.333 300.395 (squared distance: 22936.3)   548.51 458.035 292.812 (squared distance: 23182.1)   546.284 426.67 535.989 (squared distance: 25041.6)   577.058 390.276 508.597 (squared distance: 25853.1)   543.16 458.727 276.859 (squared distance: 26157.5)   613.997 387.397 443.207 (squared distance: 27262.7)   608.235 467.363 327.264 (squared distance: 32023.6)   506.842 591.736 391.923 (squared distance: 33260.3)   529.842 475.715 241.532 (squared distance: 36113.7)   485.822 322.623 244.347 (squared distance: 36150.5)   362.036 318.014 269.201 (squared distance: 37493.6)   493.806 600.083 462.742 (squared distance: 38032.3)   392.315 368.085 585.37 (squared distance: 38442.9)   303.826 428.659 533.642 (squared distance: 39392.8)   616.492 424.551 289.524 (squared distance: 39556.8)   320.563 333.216 278.242 (squared distance: 41804.5)   646.599 502.256 424.46 (squared distance: 43948.8)   556.202 325.013 568.252 (squared distance: 44751)   291.27 497.352 515.938 (squared distance: 45463.9)   286.483 322.401 495.377 (squared distance: 45567.2)   367.288 550.421 550.551 (squared distance: 46318.6)   595.122 582.77 394.894 (squared distance: 46938.1)   256.784 499.401 379.931 (squared distance: 47064.1)   430.782 230.854 293.829 (squared distance: 48067.2)   261.051 486.593 329.854 (squared distance: 48612.7)   602.061 327.892 545.269 (squared distance: 48632.4)   347.074 610.994 395.622 (squared distance: 49475.6)   482.876 284.894 583.888 (squared distance: 49718.6)   356.962 247.285 514.959 (squared distance: 50423.7)   282.065 509.488 516.216 (squared distance: 50730.4) ---------------------  作者Spongelady  来源CSDN  原文https://blog.csdn.net/qq_25491201/article/details/51135054  版权声明本文为博主原创文章转载请附上博文链接
http://www.zqtcl.cn/news/249268/

相关文章:

  • 网站开发学习培训广州网站优化关键词公司
  • 毕节金海湖新区城乡建设局网站企业网站的步骤
  • 网站后台设计教程网站建设判断题
  • 珠海网站建设 金蝶天元建设集团有限公司李华
  • 海安市建设局网站成都官网seo技术
  • 网站建设策划书结束语wordpress付费版
  • 进口网站建设做网站用什么格式的图片
  • 青海省住房和城乡建设部网站进入网站空间
  • 做公司简介的开源网站企业seo多少费用
  • 学校网站建设工作方案昆明做网站词排名优化
  • 镇江企业做网站针对人群不同,网站做细分
  • 个人单页网站建设台州网站建设惠店
  • 专做婚礼logo的网站做搜狗pc网站快速排
  • 北京网站建设公司分享网站改版注意事项做网站需要多大空间
  • 主机网站建设制作天津西青区天气预报
  • 网站没有内容可以备案吗横向网站源码
  • 做的网站浏览器提示不安全站优化
  • dede移动端网站源码电子商务网站建设开题报告
  • 做网站价格多少优质做网站哪家好
  • 网站建设及推广服务的合同范本留言网站建设的报告
  • 工程师招聘网站做网站需要公司资质吗
  • 苏州模板网站建站开网店如何运营和推广
  • 换空间网站备案北京网页设计平台
  • 德德模板网站建设步骤可信的品牌网站建设
  • 网站权重0免费好用的ip代理
  • 赣州建设网站公司敬请期待英文怎么写
  • 可以做多边形背景的网站深圳网站建设 套餐
  • 建设工程的招标网站有哪些长江证券官方网站下载
  • 鹤壁网站建设智能网站建设步骤
  • 建设工程规划许可证在哪个网站查询手机免费推广软件