当前位置: 首页 > news >正文

有一个网站是做釆购的是什么网苏州网络推广去苏州聚尚网络

有一个网站是做釆购的是什么网,苏州网络推广去苏州聚尚网络,温州网站建设免费咨询,做网上商城网站绘图基础语法 #xff11; 创建画布并且创建子图 首先创建一个空白的画布#xff0c;并且可以将画布分为几个部分#xff0c;这样就可以在同一附图上绘制多个图像。 plt.figure 创建一个空白画布#xff0c;可以指定画布大小、像素 figure.add_subplot 创建并且选中子…绘图基础语法 创建画布并且创建子图 首先创建一个空白的画布并且可以将画布分为几个部分这样就可以在同一附图上绘制多个图像。 plt.figure  创建一个空白画布可以指定画布大小、像素 figure.add_subplot 创建并且选中子图可以指定子图的行数、列数、和图片的编号 2 添加画布内容 plt.title  当前图形标题可以指定标题名称、位置、颜色、字体大小 plt.xlabel 当前图像添加x轴名称 plt.ylabel 当前图形添加y轴名称 plt.xlim 指定当前图形x轴的范围 plt.ylim y轴的范围 plt.xtricks  x轴刻度数目与取值 plt.legend 当前图像的图例 import numpy as np import matplotlib.pyplot as pltradnp.arange(0,np.pi*2,0.01) p1plt.figure(figsize(8,8),dpi80) #创建画布#子图 ax1p1.add_subplot(1,2,1) #2行1列的子图绘制第一幅 plt.title(lines) #添加标题 plt.xlabel(x) #x轴的名称 plt.ylabel(y) #y轴的名称 plt.xlim((0,1)) #确定x轴的范围 plt.ylim((0,1))plt.xticks([0,0.2,0.4,0.6,0.8,1]) #x轴的刻度 plt.yticks([0,0.2,0.4,0.6,0.8,1]) plt.plot(rad,rad**2) #添加yx**2曲线 plt.plot(rad,rad**4) #添加yx**4曲线 plt.legend([yx^2,yx^4])#第二幅子图 ax2p1.add_subplot(1,2,2) plt.title(sin/cos) plt.xlabel(rad) plt.ylabel(value) plt.xlim((0,np.pi*2)) plt.ylim((-1,1)) plt.xticks([0,np.pi/2,np.pi*1.5,np.pi*2]) plt.yticks([-1,-0.5,0,0.5,1]) plt.plot(rad,np.sin(rad)) plt.plot(rad,np.cos(rad)) plt.legend([sin,cos]) plt.savefig(./sin.png) plt.show()散点图和折线图 散点图 又叫做散点分布图是以一个特征为横坐标另一个特征为纵坐标利用坐标点的分布形态反映特征间的统计关系。 散点图可以看出特征之间的关系是线性的还是非线性的另外可以看出一个点是否偏离大多数点。如果偏离大多数点则这些点就是离群点。 散点图通过散点的疏密程度和变化趋势表示两个特征的数量关系。 matplotlib.pyplot.scatter(x, y, sNone, cNone, markerNone) s 表示点的大小c表示颜色marker表示点的类型。 折线图是一种将数据点连接起来的图像。折线图主要是用来查看因变量y随着自变量x改变的趋势。 import numpy as np import matplotlib.pyplot as pltradnp.arange(0,np.pi*2,0.01) p1plt.figure(figsize(8,8),dpi80) #创建画布#子图 ax1p1.add_subplot(1,2,1) #2行1列的子图绘制第一幅 plt.title(lines) #添加标题 plt.xlabel(x) #x轴的名称 plt.ylabel(y) #y轴的名称 plt.xlim((0,1)) #确定x轴的范围 plt.ylim((0,1))plt.xticks([0,0.2,0.4,0.6,0.8,1]) #x轴的刻度 plt.yticks([0,0.2,0.4,0.6,0.8,1]) plt.plot(rad,rad**2,colorr,linestyle--) #添加yx**2曲线 plt.plot(rad,rad**4,colorc,linestyle-) #添加yx**4曲线 plt.legend([yx^2,yx^4])#第二幅子图 ax2p1.add_subplot(1,2,2) radnp.arange(0,np.pi*2,0.1) plt.title(sin/cos) plt.xlabel(rad) plt.ylabel(value) plt.xlim((0,np.pi*2)) plt.ylim((-1,1)) plt.xticks([0,np.pi/2,np.pi*1.5,np.pi*2]) plt.yticks([-1,-0.5,0,0.5,1]) plt.scatter(rad,np.sin(rad),markerv) plt.scatter(rad,np.cos(rad),markero) plt.legend([sin,cos]) plt.savefig(./sin.png) plt.show()直方图 饼图 箱线图 用于分析特征内部分布与分散状况 直方图主要用于查看各分组数据的数量分布 饼图用于查看个分组数据在总数据中的占比 箱线图是用于发现整体数据的分散情况 直方图  用于判断特征的分布 直方图由一系列高度不等的纵向条纹表示数据分布的情况。一般横轴表示数据所属类别纵轴表示各个类别的数量或者占比。直方图可以直观的表示数据的分布状态。 import numpy as np import matplotlib.pyplot as plt# 生成一组服从正态分布的随机数 data np.random.randn(1000)# 可视化分布 plt.hist(data, bins30, densityTrue, alpha0.6, colorg)# 绘制正态分布的概率密度函数 xmin, xmax plt.xlim() x np.linspace(xmin, xmax, 100) p 0.9 * np.exp(-(x - 0) ** 2 / (2 * 0.5 ** 2)) # 正态分布的概率密度函数 plt.plot(x, p, k, linewidth2)plt.show() import numpy as np import matplotlib.pyplot as plt# 生成一组服从[0, 1]均匀分布的随机数 data np.random.uniform(0, 1, 1000)# 可视化分布 plt.hist(data, bins30, densityTrue, alpha0.6, colorg) plt.show() import numpy as np import matplotlib.pyplot as plt# 生成一组服从参数为0.5的指数分布的随机数 data np.random.exponential(0.5, 1000)# 可视化分布 plt.hist(data, bins30, densityTrue, alpha0.6, colorg) plt.show() import numpy as np import matplotlib.pyplot as plt# 生成一组服从参数为5的泊松分布的随机数 data np.random.poisson(5, 1000)# 可视化分布 plt.hist(data, bins30, densityTrue, alpha0.6, colorg) plt.show() from scipy import stats import numpy as np # 生成一组随机数 data np.random.randn(10000)# 检测正态分布 stat, p stats.normaltest(data) print(Statistics%.3f, p%.3f % (stat, p))# 如果p值小于显著性水平例如0.05则认为数据不服从正态分布 if p 0.05:print(Data does not follow normal distribution) else:print(Data follows normal distribution)# 拟合指数分布 loc, scale stats.expon.fit(data) print(Exponential distribution parameters: loc%.3f, scale%.3f % (loc, scale))# 检测指数分布 stat, p stats.kstest(data, stats.expon(locloc, scalescale).cdf) print(Statistics%.3f, p%.3f % (stat, p))# 如果p值小于显著性水平例如0.05则认为数据不符合指数分布 if p 0.05:print(Data does not follow exponential distribution) else:print(Data follows exponential distribution) 知道数据的分布可以更好的理解数据的变化规律而且可以帮助我们发现数据中的异常值。通过对数据分布的分析可以识别并且处理重复值缺失值异常值提高数据的质量和准确性。 饼图 饼图是将各项的大小和各项总和比例显示在一张图上饼图可以清楚的反应部分与部分部分与整体的比例关系。 import matplotlib.pyplot as plt# 数据 labels [A, B, C, D] sizes [15, 30, 45, 10]# 绘制饼图 plt.pie(sizes, labelslabels, autopct%1.1f%%)# 显示图形 plt.show() 箱线图  判断数据的分散程度 箱线图可以用来显示一组数据分散情况的统计图包含一组数据的最大值、最小值 中位数、和上下四分位数。 箱线图有箱子和边缘构成其中箱子包含了50%的数据边缘则代表数据的上四分位数和下四分位数也就是数据的上边缘和下边缘各包含了25%的数据。箱子的中间包含了一条线表示了数据的中位数。 import matplotlib.pyplot as plt import numpy as np all_data[np.random.normal(0,std,100) for std in range(1,4)]figure,axesplt.subplots() #得到画板、轴 axes.boxplot(all_data,patch_artistTrue) #描点上色 plt.show() #展示 import matplotlib.pyplot as plt import numpy as np# 创建数据 datanp.random.normal(0,1,10000)# 计算上下四分位数和异常值 q1 np.percentile(data, 25) q3 np.percentile(data, 75) iqr q3 - q1 lower q1 - 1.5 * iqr upper q3 1.5 * iqr outliers [x for x in data if x lower or x upper]print(q1,q1) print(q3,q3) print(iqr,iqr) print(lower,lower) print(upper,upper) print(outliers,outliers) print(异常值的个数,len(outliers))# 绘制箱线图 fig, ax plt.subplots() ax.boxplot(data, vertTrue, patch_artistTrue) ax.set_title(Box Plot) ax.set_xlabel(Data) ax.set_ylabel(Value) ax.text(0.85, 0.90, Outliers: {0}.format(, .join(map(str, outliers))), hacenter, vacenter) plt.show() 箱线图的理解-CSDN博客 通过箱线图找到异常值  import matplotlib.pyplot as plt import numpy as np# 创建数据 datanp.random.normal(0,1,10000)# 计算上下四分位数和异常值 q1 np.percentile(data, 25) q3 np.percentile(data, 75) iqr q3 - q1 lower q1 - 1.5 * iqr upper q3 1.5 * iqr outliers [x for x in data if x lower or x upper]print(q1,q1) print(q3,q3) print(iqr,iqr) print(lower,lower) print(upper,upper) print(outliers,outliers) print(异常值的个数,len(outliers))# 绘制箱线图 fig, ax plt.subplots() ax.boxplot(data, vertTrue, patch_artistTrue) ax.set_title(Box Plot) ax.set_xlabel(Data) ax.set_ylabel(Value) ax.text(0.85, 0.90, Outliers: {0}.format(, .join(map(str, outliers))), hacenter, vacenter) # plt.show()p1plt.figure() ax1p1.add_subplot(1,2,1) ax1.hist(data,densityTrue) print(len(data)) for _ in outliers:coornp.where(data_)data[coor]np.nan# print(coor)# print(data[coor]) # cordnp.where(datanp.nan) # print(cord) datadata[~np.isnan(data)] print(len(data)) # plt.show()ax2p1.add_subplot(1,2,2) ax2.hist(data,densityTrue) plt.show()
http://www.zqtcl.cn/news/203151/

相关文章:

  • 英文网站seo常州建设局考试网站
  • wordpress 多网站哈尔滨 建网站
  • 免费网站源代码怎么制作网站教程
  • Thinkphp开发wordpress网站怎么优化seo
  • tp框架做视频网站站长统计芭乐鸭脖小猪
  • asp网站发布ftp国内f型网页布局的网站
  • 无限空间 网站四川省建设厅网站填报获奖
  • 广东佛山最新通知北京seo怎么优化
  • 浙江省通信管理局 网站备案 管理部门科技公司经营范围包括哪些
  • 网站域名备案转接入手续深圳外贸公司qc招聘
  • 湖北网站建设服务公司可以做产品推广的网站
  • 做经营性的网站备案条件wordpress删除菜单
  • js商城网站个安装wordpress
  • 想给学校社团做网站企业服务平台是做什么的
  • 网站推广渠道的类型wordpress看不到表格
  • 网站建设与推广实训报告册附近广告设计与制作门店电话
  • wordpress汉语公益网站开发使用api对seo
  • 北京网站优化前景seo网络推广专员
  • 临海网站制作工程施工合同免费版
  • 免费的黄冈网站有哪些平台wordpress 新闻发布
  • 给男票做网站表白的软件wordpress软件网站模板下载
  • 网站备案个人可以做吗dw制作一个手机网站模板
  • 如何识别一个网站是否做的好坏新河官网
  • 深圳网站建设 卓教育直播网站开发
  • 如何修改网站后台密码河南省罗山县做网站的公司
  • 个人网站免费源码大全湖南长沙新增病例最新消息
  • 途牛网站开发需求邯郸市中小学健康管理平台登录
  • 青岛商城网站开发年度关键词有哪些
  • 电商网站开发文献综述网站文案优化
  • 兼职工厂网站建设万维网的代表网站