当前位置: 首页 > news >正文

站长网站大全急招一天一结临时工

站长网站大全,急招一天一结临时工,国内知名企业网站,石家庄微信小程序定制本次实验以AAAI 2014会议论文数据为基础#xff0c;要求实现或调用无监督聚类算法#xff0c;了解聚类方法。 任务介绍 每年国际上召开的大大小小学术会议不计其数#xff0c;发表了非常多的论文。在计算机领域的一些大型学术会议上#xff0c;一次就可以发表涉及各个方向…本次实验以AAAI 2014会议论文数据为基础要求实现或调用无监督聚类算法了解聚类方法。 任务介绍 每年国际上召开的大大小小学术会议不计其数发表了非常多的论文。在计算机领域的一些大型学术会议上一次就可以发表涉及各个方向的几百篇论文。按论文的主题、内容进行聚类有助于人们高效地查找和获得所需要的论文。本案例数据来源于AAAI 2014上发表的约400篇文章由UCI公开提供提供包括标题、作者、关键词、摘要在内的信息希望大家能根据这些信息合理地构造特征向量来表示这些论文并设计实现或调用聚类算法对论文进行聚类。最后也可以对聚类结果进行观察看每一类都是什么样的论文是否有一些主题。 基本要求 将文本转化为向量实现或调用无监督聚类算法对论文聚类例如10类可使用已有工具包例如sklearn 观察每一类中的论文调整算法使结果较为合理 无监督聚类没有标签效果较难评价因此没有硬性指标跑通即可主要让大家了解和感受聚类算法比较简单。 扩展要求 对文本向量进行降维并将聚类结果可视化成散点图。 注group和topic也不能完全算是标签因为 有些文章作者投稿时可能会选择某个group/topic但实际和另外group/topic也相关甚至更相关 一篇文章可能有多个group和topic作为标签会出现有的文章同属多个类别这里暂不考虑这样的聚类 group和topic的取值很多但聚类常常希望指定聚合成出例如5/10/20类 感兴趣但同学可以思考利用group和topic信息来量化评价无监督聚类结果不作要求。 提示 高维向量的降维旨在去除一些高相关性的特征维度保留最有用的信息用更低维的向量表示高维数据常用的方法有PCA和t-SNE等 降维与聚类是两件不同的事情聚类实际上在降维前的高维向量和降维后的低维向量上都可以进行结果也可能截然不同 高维向量做聚类降维可视化后若有同一类的点不在一起是正常的。在高维空间中它们可能是在一起的降维后损失了一些信息 实验结果  from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import calinski_harabasz_score from sklearn.decomposition import PCA from sklearn.cluster import KMeans import pandas as pd import numpy as npdef load_data(pathdata/[UCI] AAAI-14 Accepted Papers - Papers.csv):df_data pd.read_csv(path)df_data df_data.dropna()return df_datadf load_data() df.describe() # 去除不好的特征 df_selected df.drop([groups, topics], axis1) cv CountVectorizer() X_features np.array([[i] for i in range(df.shape[0])])for col in df_selected.columns:tmp cv.fit_transform(df_selected[col].tolist())feature tmp.toarray()X_features np.concatenate((X_features, feature), axis1)print(特征矩阵的形状:, X_features.shape)特征矩阵的形状: (392, 9899) # 取出group和topics特征作为评价指标 df_cls df[[groups, topics]] cv CountVectorizer() X_cls [[i] for i in range(df.shape[0])] for col in df_cls.columns:tmp cv.fit_transform(df_cls[col])feature tmp.toarray()X_cls np.concatenate((X_cls, feature), axis1) SSESum of Squared Errors测量聚类结果中每个样品与所属聚类中心距离的平方和。SSE越小聚类样品越致密聚类效果越好。SSE是衡量簇内密度的指标越小越好。 CH指标Calinski-HarabaszIndex是综合考虑集群内密度和集群间分辨率的指标。计算集群间分散度与集群内密度之比。CH指标越大集群之间的距离越大集群内的距离越小集群效果越好。 for pca_num in [2, 5, 7, 10, 30]:X_pca PCA(n_componentspca_num).fit_transform(X_features)X_cs PCA(n_componentspca_num).fit_transform(X_cls)print(X_pca.shape)for k in range(5, 16):kmeans KMeans(n_clustersk)labels kmeans.fit_predict(X_pca)# 获取聚类中心centroids kmeans.cluster_centers_# 计算每个样本与所属簇中心的距离的平方distances np.sum((X_cs - centroids[labels])**2, axis1)# 计算 SSEsse np.sum(distances)# CH指标ch calinski_harabasz_score(X_cs, labels)score sse/chprint(k:, k, ch:, ch, SSE:, sse, score:, score)从结果可以看出降维度在2k为15的时候聚类效果更好。这里我用了sse和ch的比值作为成绩越小证明聚类效果越好。
http://www.zqtcl.cn/news/980519/

相关文章:

  • 网站建设后的效果评估杭州网站制作公司
  • 3网站建设公司影楼修图用什么软件
  • 手机网站的内容模块多用户商城开源左
  • 库尔勒网站建站宝盒合作
  • 五河网站建设哪家好wordpress获取文章作者
  • 怎么修改网站内容wordpress ajax接口
  • 绵阳市城乡建设和规划局网站重庆网站建设公司有哪些
  • 宿迁网站建设公司排名展厅设计企业
  • 做家具定制的设计网站开阿里巴巴网站建设流程
  • 站长统计软件广州免费核酸在哪里做
  • 做soho一定要做网站吗在百度网站备案查询上显示未备案是什么意思
  • 移动公司营销网站设计html旅游网站模板
  • 专业生产车间设计图纸网站ui设计师证
  • 如何建网站教程视频10种网络营销方法
  • 网站内链优化的角度wordpress缓存插件破解版
  • 南宁网站建设哪个好天津网站建设咨询
  • 网站开发常用中间件计算机语言python
  • 学习html5的网站软件系统开发怎样容易
  • 做企业网站用什么华为弹性云服务器创建wordpress
  • 重庆手机网站开发网站建设的条件是什么
  • 舟山建设网站公司wordpress的总结
  • 如何做com的网站做网站设计学那个专业好
  • 中山如何建设网站如何安装wordpress模板
  • 如何搭建自己得网站树状wordpress主题
  • 公司网站是别人做的如何换logo北京网站设计浩森宇特
  • 直播网站制作做阿里巴巴网站电话
  • 免费建一个自己的网站做国内网站花费
  • 苏州手机网站搭建郑州建设网站制作公司
  • 贵阳网站建设kuhugz沽源网站建设
  • 深圳网站seo推广河北建设工程信息网停用公告