当前位置: 首页 > news >正文

黄冈网站建设优化排名wordpress分类别名获取文章

黄冈网站建设优化排名,wordpress分类别名获取文章,商城推广方案,wordpress 幻灯片手机端字体摘要#xff1a;基于YOLOv7算法的高精度实时安全帽和背心目标检测系统可用于日常生活中检测与定位安全帽和安全背心#xff0c;此系统可完成对输入图片、视频、文件夹以及摄像头方式的目标检测与识别#xff0c;同时本系统还支持检测结果可视化与导出。本系统采用YOLOv7目标…摘要基于YOLOv7算法的高精度实时安全帽和背心目标检测系统可用于日常生活中检测与定位安全帽和安全背心此系统可完成对输入图片、视频、文件夹以及摄像头方式的目标检测与识别同时本系统还支持检测结果可视化与导出。本系统采用YOLOv7目标检测算法来训练数据集使用Pysdie6框架来搭建桌面页面系统支持PT、ONNX等模型权重作为系统的预测模型加载。本系统实现的功能包括模型权重的选择与初始化检测置信度与后处理IOU阈值的调节图像的导入、检测、检测结果的可视化与目标统计视频的导入、检测、检测结果的可视化与目标统计文件夹的图像批量导入、检测、检测结果的可视化与目标统计设备摄像头的导入、检测、检测结果的可视化与目标统计单张图像、视频、摄像的推理用时展示。本博文详细介绍系统的环境搭建过程、整体功能介绍与演示用时也提供了完整的Python源码和使用教程适合新入门的朋友参考同时支持二次开发整个系统的完整代码以及资源文件请转至文末的下载链接来获取。 YOLOv7算法原理介绍 2022年7月YOLOv7被提出与发布论文发表在2023的计算机视觉顶级会议CVPR上在YOLOv3和YOLOv4的官网上均挂上了YOLOv7的链接和说明这说明YOLOv7已得到了大佬的认可。官方版的YOLOv7相同体量下比YOLOv5精度更高速度快120%FPS比 YOLOX 快180%FPS比 Dual-Swin-T 快1200%FPS比 ConvNext 快550%FPS比 SWIN-L快500%FPS。在5FPS到160FPS的范围内无论是速度或是精度YOLOv7都超过了目前已知的检测器并且在GPU V100上进行测试精度为56.8% AP的模型可达到30 FPSbatch1以上的检测速率与此同时这是目前唯一一款在如此高精度下仍能超过30FPS的检测器。 论文地址https://arxiv.org/pdf/2207.02696.pdf 源码地址https://github.com/WongKinYiu/yolov7 YOLOv7模型结构 YOLOv7模型的整体结构如下与YOLOv5相似整体可分为Input、Backbone、Neck、Head以及Prediction模块。 本节介绍YOLOv7相关模型里的新的模块 1ReOrg位于yolov7-w6.yaml文件中 这个模块其实是对输入的信息进行切片操作与YOLOv2算法的PassThrough层以及YOLOv5v5.0版本的Focus操作类似对输入图层尽可能保持原信息并进行下采样。这部分代码具体位于models/common.py文件的48行 2多路卷积模块 这部分主要还是大量复用1×1的point Conv和3×3的standard Conv每个Conv 的输出不仅作为下一个Conv的输入还会和所有其他的Conv输出进行Concat相连操作类似于DenseNet里面的操作 3SPPCSPC模块 这是一种利用金字塔池化操作和CSP结构得到的模块依旧包含了大量支路总的输入会被分成三段进入不同的分支最中间的分支其实就是金字塔池化操作左侧分支类似于 depthwise Conv但是请注意中间的3×3卷积并未进行分组依旧是标准卷积右侧则为一个point onv最后将所有分支输出的信息流进行 concat向量这部分代码具体位于models/common.py文件的262行。 4RepConv模块 RepVGG是一种基于VGG网络设计的多分支模型在训练过程中可以通过多分支提升性能推理可以通过结构重新参数化转换为具有3×3卷积和ReLU的连续直筒型VGG类网络实现推理速度的加快这部分代码具体位于models/common.py文件的463行。 5E-ELAN模块 这部分是对多路卷积模块的补充在更大更深的模型才会用到yolov7-e6e模型中。在大多数关于设计高效网络的论文中主要考虑的因素是参数量、计算量和计算密度。但从内存访存的角度出发出发还可以分析输入 / 输出信道比、架构的分支数和元素级操作对网络推理速度的影响shufflenet 论文提出)。在执行模型缩放时还需考虑激活函数即更多地考虑卷积层输出张量中的元素数量。在大规模 ELAN 中无论梯度路径长度和计算模块数量如何都达到了稳定的状态。但如果更多计算模块被无限地堆叠这种稳定状态可能会被破坏参数利用率也会降低。作者进一步提出E-ELAN采用 expand、shuffle、merge cardinality 结构实现在不破坏原始梯度路径的情况下提高网络的学习能力具体在 cfg/training/yolov7-e6e.yaml可看到拆散成单独算子的结构配置 YOLOv7损失函数 YOLOv7整体和YOLOv5保持一致分为坐标损失、目标置信度损失GT就是训练阶段的普通IoU和分类损失三部分。其中目标置信度损失和分类损失采用BCEWithLogitsLoss带log的二值交叉熵损失坐标损失采用CIoU损失。详细参见utils/loss.py 里面的 ComputeLossOTA函数。 IoU_Loss主要考虑检测框和目标框重叠面积。 GIoU_Loss在IoU的基础上解决边界框不重合时的问题。 DIoU_Loss在IoU和GIoU的基础上考虑边界框中心点距离的信息。 CIoU_Loss在DIoU的基础上考虑边界框宽高比的尺度信息。 系统环境搭建 1打开Anaconda Prompt如果电脑没有anaconda软件需下载安装 2创建yolo7的conda环境conda create -n yolo7 python3.8并激活yolo7环境conda activate yolo7 3进入到项目目录本文演示目录为E:\Pyside6_yolov7\yolov7 4安装环境依赖包pip install -r requirements.txt 5在环境中输入python base_camera,py 来打开系统界面 系统界面及功能展示 在本博文中将展示设计的软件界面整体界面设计简洁大方提供了直观的操作体验主要功能包括以下几个方面 模型权重的导入与初始化 检测置信分与后处理IoU阈值的调节 已检测目标的信息展示 检测用时的统计与展示 图像的导入、检测、结果可视化展示及导出 视频的导入、检测、结果可视化展示及导出 文件夹下图像的批量导入、检测、结果可视化展示及导出 摄像头的导入、检测、结果可视化展示及导出 软件的初始界面示例如下图展示 模型权重选择与初始化 用户可以通过点击“模型选择”按钮来上传已训练好的模型权重支持的权重格式包括.pt以及.onnx等。在上传了模型权重后用户可以单击“模型初始化”按钮实现对已选择模型权重的初始化信息配置。此外用户还可以通过调整各种参数如置信度阈值Confidence、检测后处理阈值IoU等来优化检测结果的准确性与速度。在Confidence或IoU下方的输入框中改变值即可同步改变滑动条的进度同时改变滑动条的进度值也可同步改变输入框的值Confidence或IOU值的改变将同步到模型里的配置来改变检测置信度阈值与IOU阈值。在完成所有设置后用户可以轻松地启动检测过程并查看检测结果的可视化展示。在完成相应的操作后系统的状态栏系统右下方也会显示对应操作的返回结果。 图像的选择、检测、展示与导出 用户可以通过点击“图像选择”按钮轻松上传单张图片进行检测与识别。接下来只需单击“检测”按钮系统右下角的按钮详见上面图例系统便会自动完成目标检测任务。在检测过程中系统将在“检测用时”栏显示完成检测的推理时间并在“目标数量”栏显示已检测到的目标数量。用户还可以通过下拉框选择已检测目标并查看相应的位置信息即左上角x坐标xmin、左上角y坐标ymin、左下角x坐标xmax以及左下角y坐标ymax标签值的变化。在检测完成后系统的右方会显示输入图像的检测结果。 如果用户希望将检测结果保存的话可以点击“图像结果导出”按钮然后在弹出的对话框中输入保存文件名及后缀如1.jpg即可实现检测结果图像的保存。 当用户点击结束按钮系统右下角的按钮详见上面图例时系统将退出当前检测任务并刷新界面清空所有输出信息。此外用户还可以继续点击“图像选择”或“视频选择”按钮来上传图像或视频进行相应的检测与识别。总之这个系统为用户提供了一个简单易用的界面让用户可以快速地完成图像检测任务并方便地查看与导出检测结果。具体的操作示例如下图所示。 视频的选择、检测、展示与导出 用户可以点击“视频选择”按钮来上传视频进行检测与识别。接下来用户只需单击“检测”按钮系统右下角的按钮详见上面图例系统便会自动完成视频目标检测任务。在检测过程中系统将在“检测用时”栏显示单帧目标检测的推理时间并在“目标数量”栏显示单帧检测到的目标数量同时本系统采取进度条来直观地显示当前检测进度。用户还可以通过下拉框选择已检测目标并查看相应的位置信息即左上角x坐标xmin、左上角y坐标ymin、左下角x坐标xmax以及左下角y坐标ymax标签值的变化。在检测完成后系统的右方会显示输入视频的检测结果。 为了方便用户暂停观察视频检测结果系统提供了“暂停”按钮系统右下角的按钮详见上面图例。用户点击后系统将会暂停视频检测此时用户可以通过下拉目标框选择已检测目标的坐标位置信息然后再点击“继续”按钮系统右下角的按钮详见上面图例即可实现输入视频的继续检测。 如果用户希望将视频检测结果保存可以点击“视频结果导出”按钮然后在弹出的对话框中输入保存文件名及后缀如2.mp4即可实现检测结果视频的保存。当用户点击“结束”按钮时系统右下角的按钮详见上面图例系统将退出当前视频检测任务并刷新界面清空所有输出信息。 文件夹的批量图像导入、检测、展示与导出 用户可以通过点击“文件夹”按钮轻松完成批量图片的上传。接下来只需单击“检测”按钮系统右下角的按钮详见上面图例系统便会自动完成目标检测任务对所有文件夹下的图片进行检测。在检测过程中系统在“检测用时”栏显示完成检测的推理时间并在“目标数量”栏显示已检测到的目标数量同时本系统采取进度条来直观地显示当前检测进度。用户还可以通过下拉框选择已检测目标并查看相应的位置信息即左上角x坐标xmin、左上角y坐标ymin、左下角x坐标xmax以及左下角y坐标ymax标签值的变化。在检测完成后系统的右方会显示输入图像的检测结果。 如果用户希望将检测结果批量保存的话可以点击“文件夹导出”按钮然后在弹出的对话框中选择输出文件夹即可实现批量检测结果图像的保存。当用户点击结束按钮系统右下角的按钮详见上面图例时系统将退出当前检测任务并刷新界面清空所有输出信息。具体的操作示例如下图所示。 摄像头的检测、展示与导出 用户可以通过点击“摄像头打开”按钮来启动摄像头设备默认开始本机设备的第一个摄像头。接下来用户只需单击“检测”按钮系统右下角的按钮详见上面图例系统便会自动完成摄像头目标检测任务。在检测过程中系统将在“检测用时”栏显示消耗的时间并在“目标数量”栏显示已检测到的目标数量。用户还可以通过下拉框选择已检测目标并查看相应的位置信息即左上角x坐标xmin、左上角y坐标ymin、左下角x坐标xmax以及左下角y坐标ymax标签值的变化。 如果用户希望将摄像头检测结果保存可以点击“摄像头导出”按钮然后在弹出的对话框中输入保存文件名及后缀如22.mp4即可实现摄像头检测结果视频的保存。当用户点击“结束”按钮时系统右下角的按钮详见上面图例系统将退出当前摄像头检测任务并刷新界面清空所有输出信息。总之这个系统为用户提供了一个简单易用的界面让他们可以快速地完成摄像头检测任务并方便地查看与导出检测结果。 数据集介绍 本系统使用的安全帽背心数据集手动标注了安全帽和安全背心这两个类别数据集总计3541张图片。该数据集中类别都有大量的旋转和不同的光照条件有助于训练出更加鲁棒的检测模型。本文实验的安全帽背心检测识别数据集包含训练集2870张图片验证集671张图片选取部分数据部分样本数据集如下图所示。 关键代码解析 本系统采用PyTorch来实现目标检测算法基于YOLOv7算法进行目标检测。在训练阶段我们使用了预训练模型作为初始模型进行训练然后通过多次迭代优化网络参数以达到更好的检测性能。在训练过程中我们采用了学习率衰减和数据增强等技术以增强模型的泛化能力和鲁棒性。为了更好地评估模型的性能我们在训练集和验证集上进行了大量的实验。通过调整超参数如学习率、批量大小等我们最终找到了一个适合本任务的参数设置。同时为了提高模型的泛化能力我们还采用了数据增强技术如随机旋转、缩放、裁剪和颜色变换等以扩充数据集同时降低过拟合风险。 在测试阶段我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值将置信度低于阈值的检测框过滤掉最终得到检测结果。同时我们还可以将检测结果保存为图片或视频格式以便进行后续分析和应用。本系统基于YOLOv7算法使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。本系统实现的一些关键代码如下图所示。 Pyside6界面设计 PySide6是一款免费的Python跨平台GUI库它是Python的绑定库用于开发跨平台GUI应用程序。PySide6是基于Qt5和PyQt5库的下一代Python跨平台GUI库它为开发人员提供了一个强大的工具集以构建跨平台的用户界面。PySide6的主要目标是提高性能简化开发人员的工作并提供更好的用户体验。PySide6的主要特点包括 跨平台支持PySide6支持Windows、MacOS和Linux等多个平台可以轻松地开发跨平台的GUI应用程序。 高性能PySide6采用了Qt5和PyQt5库的最新技术为开发人员提供了更高的性能。 简单易用PySide6提供了丰富的API和工具使开发人员能够快速地开发GUI应用程序而无需过多的编码。 可扩展性PySide6支持多种GUI组件和控件可以轻松地扩展和定制应用程序的用户界面。 社区支持PySide6有一个活跃的社区提供了丰富的文档和示例代码帮助开发人员快速上手。 总的来说PySide6是一款强大的Python跨平台GUI库它为开发人员提供了一个简单易用的工具集以构建跨平台的用户界面。PySide6的性能、可扩展性和社区支持使其成为一款非常适合开发人员使用的库。 实验结果与分析 在实验结果与分析部分我们使用精度和召回率等指标来评估模型的性能还通过损失曲线和PR曲线来分析训练过程。在训练阶段我们使用了YOLOv7算法对数据集进行训练总计训练了300个epochs。从下图可以看出随着训练次数的增加模型的训练损失和验证损失都逐渐降低说明模型不断地学习到更加精准的特征。在训练结束后我们使用模型在数据集的验证集上进行了评估得到了以下结果。 下图展示了我们训练的YOLOv7模型在验证集上的PR曲线从图中可以看出模型取得了较高的召回率和精确率整体表现良好。 综上本博文训练得到的YOLOv7模型在数据集上表现良好具有较高的检测精度和鲁棒性可以在实际场景中应用。另外本博主对整个系统进行了详细测试最终开发出一版流畅的高精度目标检测系统界面就是本博文演示部分的展示完整的UI界面、测试图片视频、代码文件等均已打包上传感兴趣的朋友可以关注我私信获取下载链接。另外本博文的PDF与更多的目标检测识别系统请关注笔者的微信公众号 BestSongC (目前已发布基于YOLOv5算法和YOLOv8算法开发的系统界面以及目标检测算法改进系列)来获取。 其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我从博主其他视频中获取下载链接。 完整项目目录如下所示
http://www.zqtcl.cn/news/948982/

相关文章:

  • 在虚拟机中如何做二级域名网站个人网站做哪种能赚钱
  • 贵州建设水利厅考试网站wordpress主查询翻页
  • 网站优化网络推广seo天津建设工程信息网几点更新
  • 兰州网站seo技术厂家比较实用的h5网页建设网站
  • 怎样让自己做的网站被百度收录动漫制作软件
  • 西安网站制作哪家公司好怎么向企业推销网站建设
  • 电子商务网站建设新闻深圳坂田网站设计公司有哪些
  • 上海电子商城网站制作wordpress循环该分类子分类
  • 茶山做网站教育网站建设计划书
  • 成品门户网站源码免费海外网络加速器免费
  • 企业网站怎么建设公司深圳企业招聘信息最新招聘信息
  • 天津网站经营性备案下载网站上的表格 怎么做
  • 胶州企业网站设计十大互联网营销公司
  • 视频解析wordpresswordpress 优化版本
  • 柳州网站建设哪家便宜广东省建设厅三库一平台
  • 云南城市建设官方网站wordpress和织梦哪个好
  • 国外企业招聘网站专门做外贸的网站有哪些
  • 陕西交通建设集团网站营销公司是什么意思
  • 网站建设自建与租用区别杭州建设局网站官网
  • 广告公司企业介绍seo研究中心怎么样
  • 苏州网站建设熊掌岳阳做网站哪家好
  • 深圳网站制作公司报价单宝塔做两个网站6
  • 百度站长工具怎么查排名贵港网站制作
  • 运城个人网站建设学校网站建设目的
  • 住房城乡建设部门门户网站购物网站排名大全
  • 手机网站平台江门网站建设模板
  • 做本地网站需要什么资质百度多长时间收录网站
  • 网站建设公司使用图片侵权使用者有无责任夸克免费空间
  • 网站建设制作鸿运通做网站能用python吗
  • 站长源码之家Wordpress 新建标签