当前位置: 首页 > news >正文

网站屏蔽国内ip企业网站有哪些例子

网站屏蔽国内ip,企业网站有哪些例子,金融类网站建设,微网站与微信公众号笔记整理 | 孙磊#xff0c;天津大学硕士。动机RDF形式的语义网的繁荣对高效、可伸缩以及分布式的存储和高可用和容错并行策略都有着要求。RDF数据的飞速增长提升了在分布式数据管理系统上高效划分策略的需求来提升SPARQL查询性能。亮点本文提出了新的用于RDF的关系分割架构Pr… 笔记整理 | 孙磊天津大学硕士。动机RDF形式的语义网的繁荣对高效、可伸缩以及分布式的存储和高可用和容错并行策略都有着要求。RDF数据的飞速增长提升了在分布式数据管理系统上高效划分策略的需求来提升SPARQL查询性能。亮点本文提出了新的用于RDF的关系分割架构Property Table PartitioningPTP它将现有的属性表基于独有的属性划分成多个表来最小化输入数据和join操作。本文将介绍一个基于Spark使用SQL在PTP架构上执行SPARQL查询的分布式RDF数据管理系统S3QLRDF方法S3QLRDF(SPARQL to Spark SQL for RDF)是一个基于Hadoop和Spark的针对大规模RDF数据的分布式SPARQL查询处理器。它将SPARQL编译成SQL并根据RDF数据分割架构PTP使用了Spark的关系接口来进行查询执行。l属性表划分Modified Property Table是传统PT的一个修改版本其中多值属性被使用如Array的嵌套数据结构存储在一个格子内。本文使用N-Triples格式的数据首先创建一个TTTriple Table然后创建如下格式的PTProperty Table其中n是RDF数据集中独有属性的总数。这里每个RDF主语都被存储在主语列它们的宾语值存储在对应的属性列中。下一步将Modified Property Table基于独有属性划分成多个表。每个PTP表根据划分情况只包含有特殊值的主语然后使用特殊属性作为划分的表名。下面的表2就是由表1获得的划分后的属性表。本文还保存了一个统计文件来存储每个PTP表的实际大小和多值属性的名称这将在查询生成时用到。1查询处理为了生成对应于SPARQL查询的Spark SQL表达式本文了使用FlexBison和C14实现了一个查询编译器。BGP查询时SPARQL查询的核心本文主要关注BGP分块。一个triple grouptg由BGP中有相同主语的triple pattern构成。考虑以下BGP 可被分成三个triple group然后对每个triple group中固定值的数量进行计数其中tg1-1tg2-1tg3-0。这里每个triple group都可以不使用join来通过子查询来回答三元组中的固定值都作为WHERE语句中的条件。主语和宾语基于它们在三元组中的位置被映射成变量。因为系统知道PTP表的实际大小对于一个triple group它可以选择有最少三元组的表。例如tg1有两个独有属性type和name所以有两个候选表可用。从统计文件中可知type表的三元组数量是5而name表是2所以系统将为tg1选择name表。然后系统将基于固定值的数量和选择的表大小来安排执行顺序。有最多固定值的triple group将有最高的执行优先级。当固定值数量相同时有最少三元组的表将有更高的优先级。例如tg1和tg2都有最多的固定值但tg1选择的表比tg2选择的表有更少的三元组所以tg1将有更高的执行优先级。所以最后的执行顺序是tg1-tg2-tg3。全部的SPARQL翻译过程如下对应于tg1的子查询sq1为由统计文件可知author是一个多值属性。因此author列将被平整对应于tg2的第二个子查询sq2为对应于tg3的第三个子查询sq3为在得到最后的执行顺序以及每个triple group的变量映射后我们得到了对应于bgp的sql查询因此输入的SPARQL查询通过将操作符映射成对应的Spark SQL关键词被翻译成了对应的Spark SQL查询。SPARQL中的Filter表达式被映射成Spark SQL中的对应的WHERE语句中的Spark SQL陈述中的条件。OPTIONAL模式被映射到LEFTOUTER JOINUNIONLIMITORDER BY和DISTINCT可以直接被映射成Spark SQL中的对应语句。理论分析实验作者使用了两个合成的数据集LUBM和WatDiv。LUBM是一个在2005年提出的数据生成器被设计用来测试语义网存储的推理能力。LUBM提供了14个预先定义的测试查询但是这些查询中大多数的结构都很简单并且都很相似。Waterloo大学在2014年发布了WatDiv它被设计用来覆盖架构和数据驱动的4种不同类型的SPARQL查询线性、星型、雪花和复杂型。本文将S3QLRDF的原型与4种其他开源的基于Hadoop的系统CliqueSquare、S2RDF、SPARQLGX和Rya进行对比。图4列出了存储大小和数据加载时间。在数据加载阶段本文将所有的URI使用对应的名称空间的前缀替代并且移除数据类型信息将其转换成原始类型来解析数据。本文将S3QLRDF与其他系统从如下方面进行性能方面的比较预处理加载时间存储大小查询执行时间。所有测量都测试四轮取平均值。S3QLRDF有两布加载过程第一步创建属性表第二步创建PTP表。因为Spark SQL有cacheTable功能将表缓存在内存中对于缓存和不缓存PTP表的情况分别测量执行情况。图5中可以观察到S3QLRDF在LUBM上的表现好于所有其他系统至多一个量级。Q1和Q4是最有选择性的查询返回很少的结果S3QLRDF能在5200ms或更少的时间回答。这些查询是星型模式S3QLRDF能使用PTP表高效地回答。对于最没有选择性地Q14S3QLRDF也表现地比其他系统更好。Q2、Q8和Q12是复杂模式的查询其中Q8和Q12产生的结果不随着数据集的大小增加而变化。图6和7展示了不同系统在WatDiv数据集上的表现对比S3QLRDF和S3QLRDF-CT的表现再次在所有类型查询中随着数据集大小增加有很好的表现。总结本文提出了一个基于PTP存储架构和Spark的分布式RDF存储和SPARQL查询系统S3QLRDF。S3QLRDF通过将SPARQL编译成SQL使用Spark SQL的接口来执行查询。本文通过在Hadoop集群上使用不同数据集和多种查询类型与其他系统进行性能评价比较。本文提出的S3QLRDF系统对于所有查询类型的表现达到了分布式SPARQL查询处理器的最佳。  OpenKG开放知识图谱简称 OpenKG旨在促进中文知识图谱数据的开放与互联促进知识图谱和语义技术的普及和广泛应用。点击阅读原文进入 OpenK
http://www.zqtcl.cn/news/651023/

相关文章:

  • 太原cms建站模板建设部网站监理注销查询
  • 流量对网站排名的影响因素网站内容的作用
  • 彩钢做网站能赚钱吗合肥市住房和城乡建设厅
  • 顺德网站建设itshunde罗村建网站
  • 网站开发语言开发十大免费货源网址
  • 网站建设要那些收费项如何做自己的淘客网站
  • 郴州文明网网站网站设计策划书3000字
  • 免费学习资源网站网站维护得多久
  • 电子商务网站建设考试重点长沙网站推广平台
  • 商业性质网站建设步骤佛山企业网站优化
  • 做网站投入网站设计与开发未来发展方向
  • 网站seo优化外包顾问网站ip解析
  • 贵阳建网站公司兼职网站推广如何做
  • 建设企业网站公司价格page做网站
  • 直播网站建设模板跨境电商选品
  • 购物网站有哪些shop++是什么
  • 自动化优化系统网站建设网站建设类文章
  • 网站建设以及推广提案书支付通道网站怎么做
  • 上海兼职做网站凤凰军事新闻
  • 青田建设局网站ui培训哪好
  • 佛山网站seo哪家好全返网站建设
  • 快速建站哪个平台好常见网页设计
  • 织梦网站地图模板网站服务费
  • 织梦建设两个网站 视频互联网公司排名1000
  • 广州企业网站设计西昌手机网
  • 一个工厂做网站有用吗wordpress重写登录页面
  • 网站服务器如何搭建网站分页设计
  • 可以直接进入网站的正能量连接温州注册网络公司
  • 清丰网站建设价格福州绿光网站建设工作室
  • 武城网站建设价格东莞容桂网站制作