当前位置: 首页 > news >正文

深圳企业建站招聘微信网站制作教程

深圳企业建站招聘,微信网站制作教程,中企动力青岛分公司,电子商务网站建设与维护 教材一、准备训练数据 下载数据集 validation验证集 train训练集 数据集结构如下#xff1a; 将数据集解压到自己选择的目录下就行 最后的结构效果如下#xff1a; 二、构建模型 ImageDataGenerator 真实数据中#xff0c;往往图片尺寸大小不一#xff0c;需要裁剪成一样…一、准备训练数据 下载数据集 validation验证集 train训练集 数据集结构如下 将数据集解压到自己选择的目录下就行 最后的结构效果如下 二、构建模型 ImageDataGenerator 真实数据中往往图片尺寸大小不一需要裁剪成一样大小一般为正方形 数据量比较大不能一下子全部装入内存中 经常需要进行修改参数比如输出的尺寸增补图像拉伸等 from tensorflow import keras import tensorflow as tf import matplotlib.pyplot as plt import numpy as np from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.preprocessing.image import ImageDataGenerator#创建两个数据生成器指定scaling范围为0-1 train_datagen ImageDataGenerator(rescale1/255) validation_datagen ImageDataGenerator(rescale1/255)#将train_datagen数据生成器指向数据集所在文件夹 train_generator train_datagen.flow_from_directory(r.\images\training,#训练集所在文件夹target_size(300,300),#指定输出尺寸batch_size32,class_modebinary#指定二分类 ) #Found 1027 images belonging to 2 classes.#将validation_datagen数据生成器指向数据集所在文件夹 validation_generator validation_datagen.flow_from_directory(r.\images\validation,#验证集所在文件夹target_size(300,300),#指定输出尺寸batch_size32,class_modebinary#指定二分类 ) #Found 256 images belonging to 2 classes.三、训练模型 model tf.keras.models.Sequential()model.add(tf.keras.layers.Conv2D(64,(3,3),activationrelu,input_shape(300,300,3))) model.add(tf.keras.layers.MaxPooling2D(2,2)) model.add(tf.keras.layers.Conv2D(32,(3,3),activationrelu,input_shape(28,28,1))) model.add(tf.keras.layers.MaxPooling2D(2,2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(128,activationrelu)) model.add(tf.keras.layers.Dense(1,activationsigmoid))model.compile(optimizerRMSprop(lr0.001),lossbinary_crossentropy,metrics[accuracy])model.fit(train_generator,epochs20,validation_data validation_generator) Epoch 1/20 8/8 [] - 8s 996ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 136s 4s/step - loss: 7.4488 - acc: 0.5151 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 2/20 8/8 [] - 8s 968ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 136s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 3/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 141s 4s/step - loss: 7.6964 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 4/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 143s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 5/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 145s 4s/step - loss: 7.5547 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 6/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 144s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 7/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 146s 4s/step - loss: 7.5547 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 8/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 144s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 9/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 144s 4s/step - loss: 7.6964 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 10/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 144s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 11/20 8/8 [] - 8s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 143s 4s/step - loss: 7.6964 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 12/20 8/8 [] - 8s 982ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 138s 4s/step - loss: 7.6964 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 13/20 8/8 [] - 8s 968ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 135s 4s/step - loss: 7.6964 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 14/20 8/8 [] - 8s 974ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 135s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 15/20 8/8 [] - 8s 971ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 135s 4s/step - loss: 7.6964 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 16/20 8/8 [] - 8s 972ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 135s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 17/20 8/8 [] - 8s 983ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 135s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 18/20 8/8 [] - 8s 976ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 136s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 19/20 8/8 [] - 8s 969ms/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 134s 4s/step - loss: 7.8380 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000 Epoch 20/20 8/8 [] - 9s 1s/step - loss: 7.9712 - acc: 0.5000 33/33 [] - 137s 4s/step - loss: 7.5547 - acc: 0.5131 - val_loss: 7.9712 - val_acc: 0.5000四、优化参数 import os import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import RMSprop from kerastuner.tuners import Hyperband from kerastuner.engine.hyperparameters import HyperParameters#创建两个数据生成器指定scaling范围为0-1 train_datagen ImageDataGenerator(rescale1/255) validation_datagen ImageDataGenerator(rescale1/255)#将train_datagen数据生成器指向数据集所在文件夹 train_generator train_datagen.flow_from_directory(r.\images\training,#训练集所在文件夹target_size(150,150),#指定输出尺寸batch_size32,class_modebinary#指定二分类 )#将validation_datagen数据生成器指向数据集所在文件夹 validation_generator validation_datagen.flow_from_directory(r.\images\validation,#验证集所在文件夹target_size(150,150),#指定输出尺寸batch_size32,class_modebinary#指定二分类 )hp HyperParameters()def build_model(hp):model tf.keras.models.Sequential()model.add(tf.keras.layers.Conv2D(hp.Choice(num_filters_layer0,values[16,64],default16),(3,3),activationrelu,input_shape(150,150,3))),model.add(tf.keras.layers.MaxPooling2D(2,2)),for i in range(hp.Int(num_conv_layers,1,3)):model.add(tf.keras.layers.Conv2D(hp.Choice(fnum_filters_layer{i},values[16,64],default16),(3,3),activationrelu)),model.add(tf.keras.layers.MaxPooling2D(2,2)),model.add(tf.keras.layers.Conv2D(64,(3,3),activationrelu)),model.add(tf.keras.layers.MaxPooling2D(2,2)),model.add(tf.keras.layers.Flatten()),model.add(tf.keras.layers.Dense(hp.Int(hidden_units,128,512,step32),activationrelu)),model.add(tf.keras.layers.Dense(1,activationsigmoid))#是否一个神经元就行model.compile(optimizerRMSprop(lr0.001),lossbinary_crossentropy,metrics[accuracy])return modeltuner Hyperband(#将训练好的参数存放起来build_model,objectiveval_acc,max_epochs15,directoryhorse_human_params,hyperparametershp,project_namemy_horse_human_project )tuner.search(train_generator,epochs10,validation_datavalidation_generator)Trial 13 Complete [00h 02m 13s] val_acc: 0.87109375Best val_acc So Far: 0.890625 Total elapsed time: 00h 14m 22sSearch: Running Trial #14Value |Best Value So Far |Hyperparameter 16 |64 |num_filters_layer0 5 |2 |tuner/epochs 2 |0 |tuner/initial_epoch 2 |2 |tuner/bracket 1 |0 |tuner/round 0000 |None |tuner/trial_idbest_hps tuner.get_best_hyperparameters(1)[0]#根据最优把模型构建出来 print(best_hps.values){num_filters_layer0: 64, num_conv_layers: 2, hidden_units: 256, num_filters_layer1: 16, num_filters_layer2: 64, tuner/epochs: 2, tuner/initial_epoch: 0, tuner/bracket: 2, tuner/round: 0}model tuner.hypermodel.build(best_hps) model.summary()_________________________________________________________________ Layer (type) Output Shape Param # conv2d_1 (Conv2D) (None, 148, 148, 64) 1792 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 74, 74, 64) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 72, 72, 64) 36928 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 36, 36, 64) 0 _________________________________________________________________ conv2d_3 (Conv2D) (None, 34, 34, 16) 9232 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (None, 17, 17, 16) 0 _________________________________________________________________ conv2d_4 (Conv2D) (None, 15, 15, 64) 9280 _________________________________________________________________ max_pooling2d_4 (MaxPooling2 (None, 7, 7, 64) 0 _________________________________________________________________ flatten (Flatten) (None, 3136) 0 _________________________________________________________________ dense (Dense) (None, 256) 803072 _________________________________________________________________ dense_1 (Dense) (None, 1) 257 Total params: 860,561 Trainable params: 860,561 Non-trainable params: 0 _________________________________________________________________
http://www.zqtcl.cn/news/183671/

相关文章:

  • 潍坊哪里有做360网站的成都官微最新发布
  • 还有哪些网站可以做淘宝活动企业建设网站的方式
  • 上海技术公司做网站2022引流人脉推广软件
  • 网站排名优化技术安徽省城乡和建设厅网站
  • 平阴县建设工程网站英文网站模板制作
  • 网站制作超链接怎么做厦门公司建站
  • 阿里云做的网站怎么备份建筑设计网站issuu
  • 网上做设计网站广西做网站找谁
  • 网站优化成本建设项目网站备案申请表
  • 做公众号首图网站上海短期网站建设培训
  • 网站开发最好佛山优化网站排名
  • 服务器搭建网站打不开网站建设信息平台
  • 宽屏蓝色企业网站源码如何编辑网站标题
  • 免费搭建手机网站广告公司怎么取名
  • 网站抓取超时错误c 高性能网站开发
  • 营销导向企业网站策划wordpress 不显示菜单
  • 特效视频网站用.net做视频网站的案例
  • 网站建设实用的网站视屏网站的审核是怎么做的
  • 网站模板之家免费下载福州网红餐厅
  • 西安网站设计与建设第三方检测机构
  • 手机网站推广法建设网站明细报价表
  • 一级a做爰片免费网站录像好商网的网站可以做中英文切换吗
  • 视频网站闪图怎么做网件路由器管理地址
  • 一个完整的网站建设网站模板去哪要
  • 烤漆 东莞网站建设水果香精东莞网站建设技术支持
  • 国家重大项目建设库网站北京网站开发外包公司
  • 建设免费网站制作二维码的软件app
  • 网站突然没收录了网站建设和运营的成本是多少钱
  • 家政公司网站模板wordpress防cc代码
  • 福田附近做网站公司网站反向链接