当前位置: 首页 > news >正文

做海外房产最好的网站做网站怎样实现网上支付

做海外房产最好的网站,做网站怎样实现网上支付,内推网站,电力建设集团网站1、算法简述 实现矩阵相加#xff1a;Cn An Bn。这个例子虽然很简单#xff0c;但是由于矩阵元素之间相互独立#xff0c;每个元素可以非常容易地进行并行计算#xff0c;可以非常理想地在OpenCL中实现。 2. C/C实现 [cpp] view plaincopyprint?/* * This confidential…1、算法简述 实现矩阵相加Cn An Bn。这个例子虽然很简单但是由于矩阵元素之间相互独立每个元素可以非常容易地进行并行计算可以非常理想地在OpenCL中实现。 2. C/C实现 [cpp] view plaincopyprint? /*  * This confidential and proprietary software may be used only as  * authorised by a licensing agreement from ARM Limited  *    (C) COPYRIGHT 2013 ARM Limited  *        ALL RIGHTS RESERVED  * The entire notice above must be reproduced on all authorised  * copies and copies may only be made to the extent permitted  * by a licensing agreement from ARM Limited.  */    #include iostream    using namespace std;    /**  * \brief Basic integer array addition implemented in C/C.  * \details A sample which shows how to add two integer arrays and store the result in a third array.  *          No OpenCL code is used in this sample, only standard C/C. The code executes only on the CPU.  * \return The exit code of the application, non-zero if a problem occurred.  */  int main(void)  {      /* [Setup memory] */      /* Number of elements in the arrays of input and output data. */      int arraySize  1000000;        /* Arrays to hold the input and output data. */      int* inputA  new int[arraySize];      int* inputB  new int[arraySize];      int* output  new int[arraySize];      /* [Setup memory] */        /* Fill the arrays with data. */      for (int i  0; i  arraySize; i)      {          inputA[i]  i;          inputB[i]  i;      }        /* [C/C Implementation] */      for (int i  0; i  arraySize; i)      {          output[i]  inputA[i]  inputB[i];      }      /* [C/C Implementation] */        /* Uncomment the following block to print results. */      /*     for (int i  0; i  arraySize; i)     {         cout  i    i  , output     output[i]  \n;     }     */        delete[] inputA;      delete[] inputB;      delete[] output;  }   3 Open基本实现 3.1 内核代码实现 内核代码的实现如下其中指针的修饰符restrict是C99中的关键字只用于限定指针。该关键字用于告知编译器所有修改该指针所指向内容的操作全部都是基于该指针的即不存在其它进行修改操作的途径这样的后果是帮助编译器进行更好的代码优化生成更有效率的汇编代码。 [cpp] view plaincopyprint? /*  * This confidential and proprietary software may be used only as  * authorised by a licensing agreement from ARM Limited  *    (C) COPYRIGHT 2013 ARM Limited  *        ALL RIGHTS RESERVED  * The entire notice above must be reproduced on all authorised  * copies and copies may only be made to the extent permitted  * by a licensing agreement from ARM Limited.  */    /**  * \brief Hello World kernel function.  * \param[in] inputA First input array.  * \param[in] inputB Second input array.  * \param[out] output Output array.  */  /* [OpenCL Implementation] */  __kernel void hello_world_opencl(__global int* restrict inputA,                                   __global int* restrict inputB,                                   __global int* restrict output)  {      /*      * Set i to be the ID of the kernel instance.      * If the global work size (set by clEnqueueNDRangeKernel) is n,      * then n kernels will be run and i will be in the range [0, n - 1].      */      int i  get_global_id(0);        /* Use i as an index into the three arrays. */      output[i]  inputA[i]  inputB[i];  }  /* [OpenCL Implementation] */   3.2 宿主机代码实现 内核代码中并没有循环语句只计算一个矩阵元素的值每一个实例获得一个独一无二的所以需要运行的内核实例数目等同于矩阵元素个数。 [cpp] view plaincopyprint? /*     * Each instance of our OpenCL kernel operates on a single element of each array so the number of     * instances needed is the number of elements in the array.     */     size_t globalWorksize[1]  {arraySize};     /* Enqueue the kernel */     if (!checkSuccess(clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globalWorksize, NULL, 0, NULL, event)))     {         cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);         cerr  Failed enqueuing the kernel.   __FILE__  : __LINE__  endl;         return 1;     }   因为我们并没有设置内核间的依赖性OpenCL设备可以用并行的方式自由地运行内核实例。现在并行化上的唯一限制是设备的容量。在前面的代码运行之前需要建立OpenCL下面分别介绍与建立OpenCL相关的各项内容。 因为现在的操作是在GPU而不是CPU中我们需要知道任何使用数据的位置。知道数据是在GPU内存空间还是CPU内存空间是非常重要的。在桌面系统中GPU和CPU有它们自己的内存空间被相对低速率的总线分开这意味着在GPU和CPU之间共享数据是一个代价高昂的操作。在大多数带Mali-T600系列GPU的嵌入式系统中GPU和CPU共享同一个内存因此这使得以相对低的代价共享GPU和CPU之间内存成为可能。 由于这些系统的差异OpenCL支持多种分配和共享设备间内存的方式。下面是一种共享设备间内存的方式目的是减少从一个设备到另一个设备的内存拷贝(在一个共享内存系统中)。 a. 要求OpenCL设备分配内存 在C/C实现中我们使用数组来分配内存。 [cpp] view plaincopyprint? /* Number of elements in the arrays of input and output data. */  int arraySize  1000000;  /* Arrays to hold the input and output data. */  int* inputA  new int[arraySize];  int* inputB  new int[arraySize];  int* output  new int[arraySize];   在OpenCL中我们使用内存缓冲区。内存缓冲区其实是一定大小的内存块。为了分配缓冲区我们如下做 [cpp] view plaincopyprint? /* Number of elements in the arrays of input and output data. */  cl_int arraySize  1000000;  /* The buffers are the size of the arrays. */  size_t bufferSize  arraySize * sizeof(cl_int);  /*  * Ask the OpenCL implementation to allocate buffers for the data.  * We ask the OpenCL implemenation to allocate memory rather than allocating  * it on the CPU to avoid having to copy the data later.  * The read/write flags relate to accesses to the memory from within the kernel.  */  bool createMemoryObjectsSuccess  true;  memoryObjects[0]  clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, bufferSize, NULL, errorNumber);  createMemoryObjectsSuccess  checkSuccess(errorNumber);  memoryObjects[1]  clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, bufferSize, NULL, errorNumber);  createMemoryObjectsSuccess  checkSuccess(errorNumber);  memoryObjects[2]  clCreateBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, bufferSize, NULL, errorNumber);  createMemoryObjectsSuccess  checkSuccess(errorNumber);  if (!createMemoryObjectsSuccess)  {      cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);      cerr  Failed to create OpenCL buffer.   __FILE__  : __LINE__  endl;      return 1;  }   尽管这看上去更加复杂但其实这里只有三个OpenCL API调用。唯一的区别是这里我们检查错误(这是一个好的做法)而C中并不用做。b. 映射内存到局部指针 现在内存已分配但是只有OpenCL实现知道它的位置。为了访问CPU上的内存我们把它们映射到一个指针。 [cpp] view plaincopyprint? /* Map the memory buffers created by the OpenCL implementation to pointers so we can access them on the CPU. */  bool mapMemoryObjectsSuccess  true;  cl_int* inputA  (cl_int*)clEnqueueMapBuffer(commandQueue, memoryObjects[0], CL_TRUE, CL_MAP_WRITE, 0, bufferSize, 0, NULL, NULL, errorNumber);  mapMemoryObjectsSuccess  checkSuccess(errorNumber);  cl_int* inputB  (cl_int*)clEnqueueMapBuffer(commandQueue, memoryObjects[1], CL_TRUE, CL_MAP_WRITE, 0, bufferSize, 0, NULL, NULL, errorNumber);  mapMemoryObjectsSuccess  checkSuccess(errorNumber);  if (!mapMemoryObjectsSuccess)  {     cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);     cerr  Failed to map buffer.   __FILE__  : __LINE__  endl;     return 1;  }   现在这些指针可以想普通的C/C指针那样使用了。 c. 在CPU上初始化数据 因为我们已有了指向内存的指针这一步与在CPU上一样。 [cpp] view plaincopyprint? for (int i  0; i  arraySize; i)  {     inputA[i]  i;     inputB[i]  i;  }   d. 取消映射缓冲区 为了使OpenCL设备使用缓冲区我们必须把它们在CPU上的映射取消。 [cpp] view plaincopyprint? /*  * Unmap the memory objects as we have finished using them from the CPU side.  * We unmap the memory because otherwise:  * - reads and writes to that memory from inside a kernel on the OpenCL side are undefined.  * - the OpenCL implementation cannot free the memory when it is finished.  */  if (!checkSuccess(clEnqueueUnmapMemObject(commandQueue, memoryObjects[0], inputA, 0, NULL, NULL)))  {     cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);     cerr  Unmapping memory objects failed   __FILE__  : __LINE__  endl;     return 1;  }  if (!checkSuccess(clEnqueueUnmapMemObject(commandQueue, memoryObjects[1], inputB, 0, NULL, NULL)))  {     cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);     cerr  Unmapping memory objects failed   __FILE__  : __LINE__  endl;     return 1;  }   e. 映射数据到内核 在我们调度内核运行之前我们必须告诉内核哪些数据作为输入使用。这里我们映射内存对象到OpenCL内核函数的参数中。 [cpp] view plaincopyprint? bool setKernelArgumentsSuccess  true;  setKernelArgumentsSuccess  checkSuccess(clSetKernelArg(kernel, 0, sizeof(cl_mem), memoryObjects[0]));  setKernelArgumentsSuccess  checkSuccess(clSetKernelArg(kernel, 1, sizeof(cl_mem), memoryObjects[1]));  setKernelArgumentsSuccess  checkSuccess(clSetKernelArg(kernel, 2, sizeof(cl_mem), memoryObjects[2]));  if (!setKernelArgumentsSuccess)  {      cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);      cerr  Failed setting OpenCL kernel arguments.   __FILE__  : __LINE__  endl;      return 1;  }   f. 运行内核 对于内核代码见前面如何调度它则不作详述。 g. 获取运行结果 一旦计算结束我们像映射输入缓冲区那样映射输出缓冲区。然后我们就可以使用指针读取结果数据然后取消缓冲区映射就像前面那样。 基本实现的宿主机的完整代码如下 [cpp] view plaincopyprint? /*  * This confidential and proprietary software may be used only as  * authorised by a licensing agreement from ARM Limited  *    (C) COPYRIGHT 2013 ARM Limited  *        ALL RIGHTS RESERVED  * The entire notice above must be reproduced on all authorised  * copies and copies may only be made to the extent permitted  * by a licensing agreement from ARM Limited.  */    #include common.h  #include image.h    #include CL/cl.h  #include iostream    using namespace std;    /**  * \brief Basic integer array addition implemented in OpenCL.  * \details A sample which shows how to add two integer arrays and store the result in a third array.  *          The main calculation code is in an OpenCL kernel which is executed on a GPU device.  * \return The exit code of the application, non-zero if a problem occurred.  */  int main(void)  {      cl_context context  0;      cl_command_queue commandQueue  0;      cl_program program  0;      cl_device_id device  0;      cl_kernel kernel  0;      int numberOfMemoryObjects  3;      cl_mem memoryObjects[3]  {0, 0, 0};      cl_int errorNumber;        if (!createContext(context))      {          cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);          cerr  Failed to create an OpenCL context.   __FILE__  : __LINE__  endl;          return 1;      }        if (!createCommandQueue(context, commandQueue, device))      {          cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);          cerr  Failed to create the OpenCL command queue.   __FILE__  : __LINE__  endl;          return 1;      }        if (!createProgram(context, device, assets/hello_world_opencl.cl, program))      {          cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);          cerr  Failed to create OpenCL program.  __FILE__  : __LINE__  endl;          return 1;      }        kernel  clCreateKernel(program, hello_world_opencl, errorNumber);      if (!checkSuccess(errorNumber))      {          cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);          cerr  Failed to create OpenCL kernel.   __FILE__  : __LINE__  endl;          return 1;      }        /* [Setup memory] */      /* Number of elements in the arrays of input and output data. */      cl_int arraySize  1000000;        /* The buffers are the size of the arrays. */      size_t bufferSize  arraySize * sizeof(cl_int);        /*      * Ask the OpenCL implementation to allocate buffers for the data.      * We ask the OpenCL implemenation to allocate memory rather than allocating      * it on the CPU to avoid having to copy the data later.      * The read/write flags relate to accesses to the memory from within the kernel.      */      bool createMemoryObjectsSuccess  true;        memoryObjects[0]  clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, bufferSize, NULL, errorNumber);      createMemoryObjectsSuccess  checkSuccess(errorNumber);        memoryObjects[1]  clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, bufferSize, NULL, errorNumber);      createMemoryObjectsSuccess  checkSuccess(errorNumber);        memoryObjects[2]  clCreateBuffer(context, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, bufferSize, NULL, errorNumber);      createMemoryObjectsSuccess  checkSuccess(errorNumber);        if (!createMemoryObjectsSuccess)      {          cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);          cerr  Failed to create OpenCL buffer.   __FILE__  : __LINE__  endl;          return 1;      }      /* [Setup memory] */        /* [Map the buffers to pointers] */      /* Map the memory buffers created by the OpenCL implementation to pointers so we can access them on the CPU. */      bool mapMemoryObjectsSuccess  true;        cl_int* inputA  (cl_int*)clEnqueueMapBuffer(commandQueue, memoryObjects[0], CL_TRUE, CL_MAP_WRITE, 0, bufferSize, 0, NULL, NULL, errorNumber);      mapMemoryObjectsSuccess  checkSuccess(errorNumber);        cl_int* inputB  (cl_int*)clEnqueueMapBuffer(commandQueue, memoryObjects[1], CL_TRUE, CL_MAP_WRITE, 0, bufferSize, 0, NULL, NULL, errorNumber);      mapMemoryObjectsSuccess  checkSuccess(errorNumber);        if (!mapMemoryObjectsSuccess)      {         cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);         cerr  Failed to map buffer.   __FILE__  : __LINE__  endl;         return 1;      }      /* [Map the buffers to pointers] */        /* [Initialize the input data] */      for (int i  0; i  arraySize; i)      {         inputA[i]  i;         inputB[i]  i;      }      /* [Initialize the input data] */        /* [Un-map the buffers] */      /*      * Unmap the memory objects as we have finished using them from the CPU side.      * We unmap the memory because otherwise:      * - reads and writes to that memory from inside a kernel on the OpenCL side are undefined.      * - the OpenCL implementation cannot free the memory when it is finished.      */      if (!checkSuccess(clEnqueueUnmapMemObject(commandQueue, memoryObjects[0], inputA, 0, NULL, NULL)))      {         cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);         cerr  Unmapping memory objects failed   __FILE__  : __LINE__  endl;         return 1;      }        if (!checkSuccess(clEnqueueUnmapMemObject(commandQueue, memoryObjects[1], inputB, 0, NULL, NULL)))      {         cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);         cerr  Unmapping memory objects failed   __FILE__  : __LINE__  endl;         return 1;      }      /* [Un-map the buffers] */        /* [Set the kernel arguments] */      bool setKernelArgumentsSuccess  true;      setKernelArgumentsSuccess  checkSuccess(clSetKernelArg(kernel, 0, sizeof(cl_mem), memoryObjects[0]));      setKernelArgumentsSuccess  checkSuccess(clSetKernelArg(kernel, 1, sizeof(cl_mem), memoryObjects[1]));      setKernelArgumentsSuccess  checkSuccess(clSetKernelArg(kernel, 2, sizeof(cl_mem), memoryObjects[2]));        if (!setKernelArgumentsSuccess)      {          cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);          cerr  Failed setting OpenCL kernel arguments.   __FILE__  : __LINE__  endl;          return 1;      }      /* [Set the kernel arguments] */        /* An event to associate with the Kernel. Allows us to retrieve profiling information later. */      cl_event event  0;        /* [Global work size] */      /*      * Each instance of our OpenCL kernel operates on a single element of each array so the number of      * instances needed is the number of elements in the array.      */      size_t globalWorksize[1]  {arraySize};      /* Enqueue the kernel */      if (!checkSuccess(clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globalWorksize, NULL, 0, NULL, event)))      {          cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);          cerr  Failed enqueuing the kernel.   __FILE__  : __LINE__  endl;          return 1;      }      /* [Global work size] */        /* Wait for kernel execution completion. */      if (!checkSuccess(clFinish(commandQueue)))      {          cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);          cerr  Failed waiting for kernel execution to finish.   __FILE__  : __LINE__  endl;          return 1;      }        /* Print the profiling information for the event. */      printProfilingInfo(event);      /* Release the event object. */      if (!checkSuccess(clReleaseEvent(event)))      {         cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);         cerr  Failed releasing the event object.   __FILE__  : __LINE__  endl;         return 1;      }        /* Get a pointer to the output data. */      cl_int* output  (cl_int*)clEnqueueMapBuffer(commandQueue, memoryObjects[2], CL_TRUE, CL_MAP_READ, 0, bufferSize, 0, NULL, NULL, errorNumber);      if (!checkSuccess(errorNumber))      {         cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);         cerr  Failed to map buffer.   __FILE__  : __LINE__  endl;         return 1;      }        /* [Output the results] */      /* Uncomment the following block to print results. */      /*     for (int i  0; i  arraySize; i)     {         cout  i    i  , output     output[i]  \n;     }     */      /* [Output the results] */        /* Unmap the memory object as we are finished using them from the CPU side. */      if (!checkSuccess(clEnqueueUnmapMemObject(commandQueue, memoryObjects[2], output, 0, NULL, NULL)))      {         cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);         cerr  Unmapping memory objects failed   __FILE__  : __LINE__  endl;         return 1;      }        /* Release OpenCL objects. */      cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);  }   4 向量化你的OpenCL代码 4.1 向量基础 OpenCL设备可以通告它们为不同数据类型的首选向量宽度你可以使用这个信息来选择一个内核。结果是相当于该内核为你正在运行的平台做了优化。例如一个设备可能仅有标量整数的硬件支持而另一个设备则有宽度为4的整数向量的硬件支持。可以写两个版本的内核一个用于标量一个用于向量在运行时选择正确的版本。 这里是一个在特定设备上询问首选整数向量宽度的例子。 [cpp] view plaincopyprint? /*  * Query the device to find out its prefered integer vector width.  * Although we are only printing the value here, it can be used to select between  * different versions of a kernel.  */  cl_uint integerVectorWidth;  clGetDeviceInfo(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, sizeof(cl_uint), integerVectorWidth, NULL);  cout  Prefered vector width for integers:   integerVectorWidth  endl;   对于其它OpenCL数据类型也是一样的。每一个Mali T600系列GPU核最少有两个128位宽度的ALU(算数逻辑单元)它们具有矢量计算能力。ALU中的绝大多数操作(例如浮点加浮点乘整数加整数乘)可以以128位向量数据操作(例如char16, short8, int4, float4)。使用前面讲述的询问方法来为你的数据类型决定使用正确的向量大小。 当使用Mali T600系列GPU时我们推荐在任何可能的地方使用向量。 4.2 向量化代码 首先修改内核代码以支持向量运算。对于Mali T600系列GPU来说一个向量运算的时间与一个整数加法的时间是一样的。具体代码解读见下面代码中的注释部分。 [cpp] view plaincopyprint? __kernel void hello_world_vector(__global int* restrict inputA,                                   __global int* restrict inputB,                                   __global int* restrict output)  {      /*      * We have reduced the global work size (n) by a factor of 4 compared to the hello_world_opencl sample.      * Therefore, i will now be in the range [0, (n / 4) - 1].      */      int i  get_global_id(0);      /*      * Load 4 integers into a.      * The offset calculation is implicit from the size of the vector load.      * For vloadN(i, p), the address of the first data loaded would be p  i * N.      * Load from the data from the address: inputA  i * 4.      */      int4 a  vload4(i, inputA);      /* Do the same for inputB */      int4 b  vload4(i, inputB);      /*      * Do the vector addition.      * Store the result at the address: output  i * 4.      */      vstore4(a  b, i, output);  }   由于现在每个内核实例能够实现多个加法运算所以必须减少内核实例的数量在宿主机代码中的修改部分如下所示。 [cpp] view plaincopyprint? /*  * Each instance of our OpenCL kernel now operates on 4 elements of each array so the number of  * instances needed is the number of elements in the array divided by 4.  */  size_t globalWorksize[1]  {arraySize / 4};  /* Enqueue the kernel */  if (!checkSuccess(clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globalWorksize, NULL, 0, NULL, event)))  {      cleanUpOpenCL(context, commandQueue, program, kernel, memoryObjects, numberOfMemoryObjects);      cerr  Failed enqueuing the kernel.   __FILE__  : __LINE__  endl;      return 1;  }   折减系数基于向量的宽度例如如果我们在内核中使用int8代替int4折减系数此时则为8。5 运行OpenCL样例 (1). 在SDK根目录的命令行提示符中 [python] view plaincopyprint? cd samples\hello_world_vector  cs-make install   这样就编译了向量化的OpenCL hello world样例拷贝了所有运行时需要的文件到SDK根目录下的bin文件夹中。 (2) . 拷贝bin文件夹到目标板中 (3). 在板子上导航到该目录运行hello world二进制文件 [python] view plaincopyprint? chmod 777 hello_world_vector  ./hello_world_vector
http://www.zqtcl.cn/news/729737/

相关文章:

  • 企业网站有哪几个类型广州做网站市场
  • 直播网站建设开发上海注册公司多少钱
  • 可以兼职做设计的网站备案期间能否做网站解析
  • 做发帖的网站代码seo联盟平台
  • 铁威马 Nas 做网站百度广告代运营
  • 有没有帮别人做网站小说关键词生成器
  • 那些开店的网站是自己做的吗装修平台排行榜前十名
  • 重庆智能网站建设价格毕业设计做系统跟做网站哪个容易
  • 淘宝美工做兼职的网站多多返利网站建设
  • 如何承接设计网站建设电商平台开发流程
  • 安康做网站简洁高端的wordpress个人博客
  • 酒店网站建设协议手机怎么做销售网站
  • 屏蔽网站接口js广告seminar
  • 谁有手机网站啊介绍一下wordpress 流量插件
  • 杭州网站公司google网站建设
  • 莱芜住房和城乡建设厅网站网站头部设计
  • 织梦响应式茶叶网站模板邯郸最新通告今天
  • 深圳公司网站改版通知做网站分类链接
  • 电子商务网站建设答案网络运营与维护
  • 网站登陆怎么做网站app的区别
  • 获取网站缩略图工信部2017网站备案
  • 有哪些网站可以做ps挣钱自己制作游戏
  • 旅游网站开发团队四川住房和城乡建设网站
  • 网站框架设计商城网站制作需要多少费用
  • 网站建设哪个公司个人网站做哪种能赚钱
  • 福建建设人才与科技发展中心seo导航站
  • 修文县生态文明建设局网站郑州制作网站哪家好
  • 泉州网站优化排名东莞长安做网站公司
  • 网站制作公司 顺的有口碑的赣州网站建设
  • 成都网站设计制作苏州新闻