铜川做网站,logo 图标 设计,债权债务交易网站开发,网站建设学习资料STM32存储左右互搏 QSPI总线FATS文件读写FLASH W25QXX
FLASH是常用的一种非易失存储单元#xff0c;W25QXX系列Flash有不同容量的型号#xff0c;如W25Q64的容量为64Mbit#xff0c;也就是8MByte。这里介绍STM32CUBEIDE开发平台HAL库Quad SPI总线实现FATS文件操作W25Q各型号…STM32存储左右互搏 QSPI总线FATS文件读写FLASH W25QXX
FLASH是常用的一种非易失存储单元W25QXX系列Flash有不同容量的型号如W25Q64的容量为64Mbit也就是8MByte。这里介绍STM32CUBEIDE开发平台HAL库Quad SPI总线实现FATS文件操作W25Q各型号FLASH的例程。非FATS直接Quad SPI操作W25QXX FLASH的方式见《STM32存储左右互搏 QSPI总线读写FLASH W25QXX》
W25QXX介绍
W25QXX的SOIC封装如下所示在采用QUAL SPI而不是SPI时管脚定义为 即由片选(/CS), 时钟(CLK), 双向4根输入输出线(IO0, IO1, IO2, IO3)组成6线QSPI信号接口。VCC和GND提供电源和接地连接。
例程采用STM32H750VBT6芯片, FLASH可以选择为8/16/32/64/128/256/512/1024 Mbit的W25Q型号。
STM32工程配置
首先建立基本工程并设置时钟 注意QSPI时钟在单独的时钟树支上 QSPI接口可以配置为两个Bank并行协同存储扩展也可以配置为单个Bank并且可以由4线数据线模式降级为单线/双线数据线模式。这里对于单个Flash选择一个bank配置 注意QSPI的片选信号是硬件自动控制和SPI可以采用软件代码控制不同所以不必单独指定一个GPIO作为片选 不用DMA 配置FATS参数 配置串口UART1作为命令输入和打印输出接口 不用DMA: 保存并生成初始工程代码
STM32工程代码
UART串口printf打印输出实现参考STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)
建立W25Q访问的库头文件W25QXX_QSPI.h:*
#ifndef INC_W25QXX_H_
#define INC_W25QXX_H_#include main.h//W25QXX serial chip list:
#define W25Q80_ID 0XEF13
#define W25Q16_ID 0XEF14
#define W25Q32_ID 0XEF15
#define W25Q64_ID 0XEF16
#define W25Q128_ID 0XEF17
#define W25Q256_ID 0XEF18
#define W25Q512_ID 0XEF19
#define W25Q1024_ID 0XEF20extern uint16_t W25QXX_TYPE; //To indicate W25QXX type used in this procedure//command table for W25QXX access
#define W25X_WriteEnable 0x06
#define W25X_WriteDisable 0x04
#define W25X_ReadStatusReg1 0x05
#define W25X_ReadStatusReg2 0x35
#define W25X_ReadStatusReg3 0x15
#define W25X_WriteStatusReg1 0x01
#define W25X_WriteStatusReg2 0x31
#define W25X_WriteStatusReg3 0x11
#define W25X_ReadData 0x03
#define W25X_FastReadData 0x0B
#define W25X_FastReadDual 0x3B
#define W25X_PageProgram 0x02
#define W25X_BlockErase 0xD8
#define W25X_SectorErase 0x20
#define W25X_ChipErase 0xC7
#define W25X_PowerDown 0xB9
#define W25X_ReleasePowerDown 0xAB
#define W25X_DeviceID 0xAB
#define W25X_ManufactDeviceID 0x90
#define W25X_JedecDeviceID 0x9F
#define W25X_Enable4ByteAddr 0xB7
#define W25X_Exit4ByteAddr 0xE9#define W25X_QUAD_QuadInputPageProgram 0x32
#define W25X_QUAD_FastReadQuadOutput 0x6B
#define W25X_QUAD_ManufactDeviceID 0x94
#define W25X_QUAD_FastRead 0xEB
#define W25X_QUAD_SetBurstwithWrap 0x77uint8_t W25QXX_Init(void);
uint16_t W25QXX_ReadID(void); //Read W25QXX ID
uint8_t W25QXX_ReadSR(uint8_t reg_num); //Read from status register
void W25QXX_4ByteAddr_Enable(void); //Enable 4-byte address mode
void W25QXX_Write_SR(uint8_t reg_num,uint8_t d); //Write to status register
void W25QXX_Write_Enable(void); //Write enable
void W25QXX_Write_Disable(void); //Write disable
void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation w/o check
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead); //Read operation
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation
void W25QXX_Erase_Chip(void); //Erase whole chip
void W25QXX_Erase_Sector(uint32_t Sector_Num); //Erase sector in specific sector number
void W25QXX_Wait_Busy(void); //Wait idle status before next operation
void W25QXX_PowerDown(void); //Enter power-down mode
void W25QXX_WAKEUP(void); //Wake-up#endif /* INC_W25QXX_H_ */
建立W25Q访问的库源文件W25QXX_QSPI.c:
#include W25QXX_QSPI.hextern QSPI_HandleTypeDef hqspi;
extern void PY_Delay_us_t(uint32_t Delay);
extern HAL_StatusTypeDef QSPI_Send_CMD(uint8_t cmd,uint32_t addr,uint8_t mode,uint8_t dmcycle);
extern HAL_StatusTypeDef QSPI_Receive(uint8_t* buf,uint32_t datalen);
extern HAL_StatusTypeDef QSPI_Transmit(uint8_t* buf,uint32_t datalen);#define Use_Quad_Line 1uint16_t W25QXX_TYPEW25Q64_ID;//W25QXX initialization
uint8_t W25QXX_Init(void)
{uint8_t temp;W25QXX_TYPEW25QXX_ReadID();if((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)){tempW25QXX_ReadSR(3); //read status register 3if((temp0X01)0) //judge address mode and configure to 4-byte address mode{QSPI_Send_CMD(W25X_Enable4ByteAddr, 0x00, (06)|(04)|(02)|(10), 0);}}if((W25QXX_TYPE0x0000)||(W25QXX_TYPE0xFFFF)) return 0;else return 1;
}//Read status registers of W25QXX
//reg_num: register number from 1 to 3
//return: value of selected register//SR1 (default 0x00)
//BIT7 6 5 4 3 2 1 0
//SPR RV TB BP2 BP1 BP0 WEL BUSY
//SPR: default 0, status register protection bit used with WP
//TB,BP2,BP1,BP0: FLASH region write protection configuration
//WEL: write enable lock
//BUSY: busy flag (1: busy; 0: idle)//SR2
//BIT7 6 5 4 3 2 1 0
//SUS CMP LB3 LB2 LB1 (R) QE SRP1//SR3
//BIT7 6 5 4 3 2 1 0
//HOLD/RST DRV1 DRV0 (R) (R) WPS ADP ADS
uint8_t W25QXX_ReadSR(uint8_t reg_num)
{uint8_t byte0,command0;switch(reg_num){case 1:commandW25X_ReadStatusReg1; //To read status register 1break;case 2:commandW25X_ReadStatusReg2; //To read status register 2break;case 3:commandW25X_ReadStatusReg3; //To read status register 3break;default:commandW25X_ReadStatusReg1;break;}QSPI_Send_CMD(command, 0x00, (16)|(04)|(02)|(10), 0); //send commandQSPI_Receive(byte,1); //read datareturn byte;
}//Write status registers of W25QXX
//reg_num: register number from 1 to 3
//d: data for updating status register
void W25QXX_Write_SR(uint8_t reg_num,uint8_t d)
{uint8_t command0;switch(reg_num){case 1:commandW25X_WriteStatusReg1; //To write status register 1break;case 2:commandW25X_WriteStatusReg2; //To write status register 2break;case 3:commandW25X_WriteStatusReg3; //To write status register 3break;default:commandW25X_WriteStatusReg1;break;}QSPI_Send_CMD(command, 0x00, (16)|(04)|(02)|(10), 0); //send commandQSPI_Transmit(d, 1); //write data
}
//W25QXX write enable
void W25QXX_Write_Enable(void)
{QSPI_Send_CMD(W25X_WriteEnable, 0x00, (06)|(04)|(02)|(10), 0); //send command
}
//W25QXX write disable
void W25QXX_Write_Disable(void)
{QSPI_Send_CMD(W25X_WriteDisable, 0x00, (06)|(04)|(02)|(10), 0); //send command
}//Read chip ID
//return:
//0XEF13 for W25Q80
//0XEF14 for W25Q16
//0XEF15 for W25Q32
//0XEF16 for W25Q64
//0XEF17 for W25Q128
//0XEF18 for W25Q256
uint16_t W25QXX_ReadID(void)
{uint16_t Temp 0;uint8_t st;uint8_t TD[8];if(Use_Quad_Line){uint8_t extra_dummy 4; //Adjust dummy here for I/O direction adjustment delayQSPI_Send_CMD(W25X_QUAD_ManufactDeviceID, 0x000000f0, (36)|(34)|(32)|(10), extra_dummy); ///To read Manufacturer/Device ID in Quad modest QSPI_Receive(TD, 2);if(st0){Temp (TD[0]8)|TD[1];}else{Temp 0;}return Temp;}else{QSPI_Send_CMD(W25X_ManufactDeviceID, 0x00, (16)|(04)|(02)|(10), 0); //To read Manufacturer/Device ID in single line modest QSPI_Receive(TD, 5);if(st0){Temp (TD[3]8)|TD[4];}else{Temp 0;}return Temp;}
}
//Read W25QXX from specific address for specific byte length
//pBuffer: data buffer
//ReadAddr: specific address
//NumByteToRead: specific byte length (max 65535)
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{if(Use_Quad_Line){uint8_t extra_dummy 8; //Adjust dummy here for I/O direction adjustment delayif((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)){QSPI_Send_CMD(W25X_QUAD_FastReadQuadOutput, ReadAddr, (36)|(34)|(12)|(10), extra_dummy);}else{QSPI_Send_CMD(W25X_QUAD_FastReadQuadOutput, ReadAddr, (36)|(24)|(12)|(10), extra_dummy);}QSPI_Receive(pBuffer, NumByteToRead); //read data}else{uint8_t extra_dummy 8; //Adjust dummy here for I/O direction adjustment delayif((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)){QSPI_Send_CMD(W25X_ReadData, ReadAddr, (16)|(34)|(12)|(10), extra_dummy);}else{QSPI_Send_CMD(W25X_ReadData, ReadAddr, (16)|(24)|(12)|(10), extra_dummy);}QSPI_Receive(pBuffer, NumByteToRead); //read data}}//Write W25QXX not more than 1 page (256 bytes)
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 256)
void W25QXX_Write_Page(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{W25QXX_Write_Enable(); //write enable//send write commandif(Use_Quad_Line){if((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)){QSPI_Send_CMD(W25X_QUAD_QuadInputPageProgram, WriteAddr, (36)|(34)|(12)|(10), 0);}else{QSPI_Send_CMD(W25X_QUAD_QuadInputPageProgram, WriteAddr, (36)|(24)|(12)|(10), 0);}}else{if((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)){QSPI_Send_CMD(W25X_PageProgram, WriteAddr, (16)|(34)|(12)|(10), 0);}else{QSPI_Send_CMD(W25X_PageProgram, WriteAddr, (16)|(24)|(12)|(10), 0);}}QSPI_Transmit(pBuffer, NumByteToWrite); //write dataW25QXX_Wait_Busy();
}//Write W25QXX w/o erase check and w/o byte number restriction
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 65535)
void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{uint16_t remained_byte_num_in_page;remained_byte_num_in_page256-WriteAddr%256; //remained byte number in pageif( NumByteToWrite remained_byte_num_in_page ) remained_byte_num_in_page NumByteToWrite; //data can be written in single pagewhile(1){W25QXX_Write_Page(pBuffer,WriteAddr,remained_byte_num_in_page);if(NumByteToWriteremained_byte_num_in_page)break; //end write operationelse //NumByteToWriteremained_byte_num_in_page{pBufferremained_byte_num_in_page;WriteAddrremained_byte_num_in_page;NumByteToWrite-remained_byte_num_in_page;if(NumByteToWrite256) remained_byte_num_in_page256; //for whole page writeelse remained_byte_num_in_pageNumByteToWrite; //for non-whole page write}};
}//Write W25QXX w/ erase after check and w/o byte number restriction
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 65535)
uint8_t W25QXX_BUFFER[4096];
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{uint32_t secpos;uint16_t secoff;uint16_t secremain;uint16_t i;uint8_t * W25QXX_BUF;W25QXX_BUFW25QXX_BUFFER;secposWriteAddr/4096; //sector number (16 pages for 1 sector) for destination addresssecoffWriteAddr%4096; //offset address in sector for destination addresssecremain4096-secoff; //remained space for sectorif(NumByteToWritesecremain)secremainNumByteToWrite; //data can be written in single sectorwhile(1){W25QXX_Read(W25QXX_BUF,secpos*4096,4096); //read sector data for ease necessity judgmentfor(i0;isecremain;i) //check sector data status{if(W25QXX_BUF[secoffi]!0XFF) break; //ease necessary}if(isecremain) //for ease{W25QXX_Erase_Sector(secpos); //ease sectorfor(i0;isecremain;i) //data copy{W25QXX_BUF[isecoff]pBuffer[i];}W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096); //write sector}else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain); //write data for sector unnecessary to eraseif(NumByteToWritesecremain)break; //for operation endelse //for operation continuing{secpos; //sector number 1secoff0; //offset address from 0pBuffersecremain; //pointer adjustmentWriteAddrsecremain; //write address adjustmentNumByteToWrite-secremain; //write number adjustmentif(NumByteToWrite4096) secremain4096; //not last sectorelse secremainNumByteToWrite; //last sector}};
}//Erase whole chip, long waiting...
void W25QXX_Erase_Chip(void)
{W25QXX_Write_Enable(); //write enableW25QXX_Wait_Busy();QSPI_Send_CMD(W25X_ChipErase, 0x00, (06)|(04)|(02)|(10), 0); //send erase commandW25QXX_Wait_Busy(); //wait for erase complete
}//Erase one sector
//Sector_Num: sector number
void W25QXX_Erase_Sector(uint32_t Sector_Num)
{Sector_Num * 4096;W25QXX_Write_Enable(); //write enableW25QXX_Wait_Busy();if((W25QXX_TYPEW25Q256_ID)||(W25QXX_TYPEW25Q512_ID)||(W25QXX_TYPEW25Q1024_ID)) //send highest 8-bit address{QSPI_Send_CMD(W25X_SectorErase, Sector_Num, (06)|(34)|(12)|(10), 0); //send erase command}else{QSPI_Send_CMD(W25X_SectorErase, Sector_Num, (06)|(24)|(12)|(10), 0); //send erase command}W25QXX_Wait_Busy(); //wait for erase complete
}//Wait idle status before next operation
void W25QXX_Wait_Busy(void)
{while((W25QXX_ReadSR(1)0x01)0x01); //wait for busy flag cleared
}//Enter power-down mode
#define tDP_us 3
void W25QXX_PowerDown(void)
{QSPI_Send_CMD(W25X_PowerDown, 0, (06)|(04)|(02)|(10), 0); //send power-down commandPY_Delay_us_t(tDP_us); //tDP
}
//Wake-up
#define tRES1_us 3
void W25QXX_WAKEUP(void)
{QSPI_Send_CMD(W25X_ReleasePowerDown, 0, (06)|(04)|(02)|(10), 0); //send release power-down commandPY_Delay_us_t(tRES1_us); //tRES1
}
对ffconf.h添加包含信息
#include main.h
#include stm32h7xx_hal.h修改user_diskio.c对文件操作函数与底层FLASH读写提供连接
/* USER CODE BEGIN Header */
/********************************************************************************* file user_diskio.c* brief This file includes a diskio driver skeleton to be completed by the user.******************************************************************************* attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************//* USER CODE END Header */#ifdef USE_OBSOLETE_USER_CODE_SECTION_0
/** Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0)* To be suppressed in the future.* Kept to ensure backward compatibility with previous CubeMx versions when* migrating projects.* User code previously added there should be copied in the new user sections before* the section contents can be deleted.*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
#endif/* USER CODE BEGIN DECL */
/**************************SELF DEFINITION PART************/
#include diskio.h /* Declarations of disk functions */
#include W25QXX_QSPI.h
/**********************************************************/
/* Includes ------------------------------------------------------------------*/
#include string.h
#include ff_gen_drv.h/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*//* Private variables ---------------------------------------------------------*/
/* Disk status */
static volatile DSTATUS Stat STA_NOINIT;/* USER CODE END DECL *//* Private function prototypes -----------------------------------------------*/
DSTATUS USER_initialize (BYTE pdrv);
DSTATUS USER_status (BYTE pdrv);
DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count);
#if _USE_WRITE 1DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count);
#endif /* _USE_WRITE 1 */
#if _USE_IOCTL 1DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff);
#endif /* _USE_IOCTL 1 */Diskio_drvTypeDef USER_Driver
{USER_initialize,USER_status,USER_read,
#if _USE_WRITEUSER_write,
#endif /* _USE_WRITE 1 */
#if _USE_IOCTL 1USER_ioctl,
#endif /* _USE_IOCTL 1 */
};/* Private functions ---------------------------------------------------------*//*** brief Initializes a Drive* param pdrv: Physical drive number (0..)* retval DSTATUS: Operation status*/
DSTATUS USER_initialize (BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{/* USER CODE BEGIN INIT *//**************************SELF DEFINITION PART************/uint8_t res;res W25QXX_Init();if(res) return RES_OK;else return STA_NOINIT;/**********************************************************//*Stat STA_NOINIT;return Stat;*//* USER CODE END INIT */
}/*** brief Gets Disk Status* param pdrv: Physical drive number (0..)* retval DSTATUS: Operation status*/
DSTATUS USER_status (BYTE pdrv /* Physical drive number to identify the drive */
)
{/* USER CODE BEGIN STATUS *//**************************SELF DEFINITION PART************/switch (pdrv){case 0 :return RES_OK;case 1 :return RES_OK;case 2 :return RES_OK;default:return STA_NOINIT;}/**********************************************************//*Stat STA_NOINIT;return Stat;*//* USER CODE END STATUS */
}/*** brief Reads Sector(s)* param pdrv: Physical drive number (0..)* param *buff: Data buffer to store read data* param sector: Sector address (LBA)* param count: Number of sectors to read (1..128)* retval DRESULT: Operation result*/
DRESULT USER_read (BYTE pdrv, /* Physical drive nmuber to identify the drive */BYTE *buff, /* Data buffer to store read data */DWORD sector, /* Sector address in LBA */UINT count /* Number of sectors to read */
)
{/* USER CODE BEGIN READ *//**************************SELF DEFINITION PART************/uint16_t len;if( !count ){return RES_PARERR; /* count不能等于0否则返回参数错误*/}switch (pdrv){case 0:sector 9; //Convert sector number to byte addresslen count*512;W25QXX_Read(buff, sector, len);return RES_OK;default:return RES_ERROR;}/**********************************************************//*return RES_OK;*//* USER CODE END READ */
}/*** brief Writes Sector(s)* param pdrv: Physical drive number (0..)* param *buff: Data to be written* param sector: Sector address (LBA)* param count: Number of sectors to write (1..128)* retval DRESULT: Operation result*/
#if _USE_WRITE 1
DRESULT USER_write (BYTE pdrv, /* Physical drive nmuber to identify the drive */const BYTE *buff, /* Data to be written */DWORD sector, /* Sector address in LBA */UINT count /* Number of sectors to write */
)
{/* USER CODE BEGIN WRITE *//* USER CODE HERE *//**************************SELF DEFINITION PART************/uint16_t len;if( !count ){return RES_PARERR; /* count不能等于0否则返回参数错误*/}switch (pdrv){case 0:sector 9; //Convert sector number to byte addresslen count*512;W25QXX_Write((uint8_t *)buff, sector, len);return RES_OK;default:return RES_ERROR;}/*********************************************************//*return RES_OK;*//* USER CODE END WRITE */
}
#endif /* _USE_WRITE 1 *//*** brief I/O control operation* param pdrv: Physical drive number (0..)* param cmd: Control code* param *buff: Buffer to send/receive control data* retval DRESULT: Operation result*/
#if _USE_IOCTL 1
DRESULT USER_ioctl (BYTE pdrv, /* Physical drive nmuber (0..) */BYTE cmd, /* Control code */void *buff /* Buffer to send/receive control data */
)
{/* USER CODE BEGIN IOCTL *//**************************SELF DEFINITION PART************/#define user_sector_byte_size 512DRESULT res;switch(cmd){case CTRL_SYNC:W25QXX_Wait_Busy();resRES_OK;break;case GET_SECTOR_SIZE:*(WORD*)buff user_sector_byte_size;res RES_OK;break;case GET_BLOCK_SIZE:*(WORD*)buff 4096/user_sector_byte_size;res RES_OK;break;case GET_SECTOR_COUNT:W25QXX_TYPEW25QXX_ReadID();if(W25QXX_TYPEW25Q80_ID) *(DWORD*)buff (8*1024*1024/512);else if(W25QXX_TYPEW25Q16_ID) *(DWORD*)buff (16*1024*1024/512);else if(W25QXX_TYPEW25Q32_ID) *(DWORD*)buff (32*1024*1024/512);else if(W25QXX_TYPEW25Q64_ID) *(DWORD*)buff (64*1024*1024/512);else if(W25QXX_TYPEW25Q128_ID) *(DWORD*)buff (128*1024*1024/512);else if(W25QXX_TYPEW25Q256_ID) *(DWORD*)buff (256*1024*1024/512);else if(W25QXX_TYPEW25Q512_ID) *(DWORD*)buff (512*1024*1024/512);else if(W25QXX_TYPEW25Q1024_ID) *(DWORD*)buff (1024*1024*1024/512);else *(DWORD*)buff (8*1024*1024/512);res RES_OK;break;default:res RES_PARERR;break;}return res;/**********************************************************//*DRESULT res RES_ERROR;return res;*//* USER CODE END IOCTL */
}
#endif /* _USE_IOCTL 1 */
main.c文件操作代码里包含几个QSPI操作函数定义如下
#define page_byte_size 256
uint8_t sdbuffer[page_byte_size];/*
QSPI TX in block mode for command byte
cmd: command to be sent to device
addr: address to be sent to device
mode: operation mode set asmode[1:0] for command transmission mode ( 00: no command; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )mode[3:2] for address transmission mode ( 00: no address; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )mode[5:4] for address length ( 00:8-bit address; 01: 16-bit address; 10: 24-bit address; 11: 32-bit address )mode[7:6] for data transmission mode ( 00: no command; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )
dmcycle: dummy clock cycle
*/
HAL_StatusTypeDef QSPI_Send_CMD(uint8_t cmd,uint32_t addr,uint8_t mode,uint8_t dmcycle)
{QSPI_CommandTypeDef Cmdhandler;Cmdhandler.Instructioncmd; //set cmdCmdhandler.Addressaddr; //set addressCmdhandler.DummyCyclesdmcycle; //set dummy circle number/*set cmd transmission mode*/if(((mode0)0x03) 0)Cmdhandler.InstructionModeQSPI_INSTRUCTION_NONE;else if(((mode0)0x03) 1)Cmdhandler.InstructionModeQSPI_INSTRUCTION_1_LINE;else if(((mode0)0x03) 2)Cmdhandler.InstructionModeQSPI_INSTRUCTION_2_LINES;else if(((mode0)0x03) 3)Cmdhandler.InstructionModeQSPI_INSTRUCTION_4_LINES;/*set address transmission mode*/if(((mode2)0x03) 0)Cmdhandler.AddressModeQSPI_ADDRESS_NONE;else if(((mode2)0x03) 1)Cmdhandler.AddressModeQSPI_ADDRESS_1_LINE;else if(((mode2)0x03) 2)Cmdhandler.AddressModeQSPI_ADDRESS_2_LINES;else if(((mode2)0x03) 3)Cmdhandler.AddressModeQSPI_ADDRESS_4_LINES;/*set address length*/if(((mode4)0x03) 0)Cmdhandler.AddressSizeQSPI_ADDRESS_8_BITS;else if(((mode4)0x03) 1)Cmdhandler.AddressSizeQSPI_ADDRESS_16_BITS;else if(((mode4)0x03) 2)Cmdhandler.AddressSizeQSPI_ADDRESS_24_BITS;else if(((mode4)0x03) 3)Cmdhandler.AddressSizeQSPI_ADDRESS_32_BITS;/*set data transmission mode*/if(((mode6)0x03) 0)Cmdhandler.DataModeQSPI_DATA_NONE;else if(((mode6)0x03) 1)Cmdhandler.DataModeQSPI_DATA_1_LINE;else if(((mode6)0x03) 2)Cmdhandler.DataModeQSPI_DATA_2_LINES;else if(((mode6)0x03) 3)Cmdhandler.DataModeQSPI_DATA_4_LINES;Cmdhandler.SIOOModeQSPI_SIOO_INST_EVERY_CMD; /*Send instruction on every transaction*/Cmdhandler.AlternateByteModeQSPI_ALTERNATE_BYTES_NONE; /*No alternate bytes*/Cmdhandler.DdrModeQSPI_DDR_MODE_DISABLE; /*Double data rate mode disabled*/Cmdhandler.DdrHoldHalfCycleQSPI_DDR_HHC_ANALOG_DELAY; /*Delay the data output using analog delay in DDR mode*/return HAL_QSPI_Command(hqspi,Cmdhandler,5000);
}//QSPI RX in block mode for data
//buf : buffer address for RX data
//datalen : RX data length
//return : 0, OK
// others, error code
HAL_StatusTypeDef QSPI_Receive(uint8_t* buf,uint32_t datalen)
{hqspi.Instance-DLRdatalen-1;return HAL_QSPI_Receive(hqspi,buf,5000);
}//QSPI TX in block mode for data
//buf : buffer address for TX data
//datalen : TX data length
//return : 0, OK
// others, error code
HAL_StatusTypeDef QSPI_Transmit(uint8_t* buf,uint32_t datalen)
{hqspi.Instance-DLRdatalen-1;return HAL_QSPI_Transmit(hqspi,buf,5000);
}然后在main.c里根据串口输入命令16进制单字节实现如下功能 0x01. 读取FLASH ID 0x02. 装载FATS文件系统 0x03: 创建/打开文件并从头位置写入数据 0x04: 打开文件并从头位置读入数据 0x05: 创建/打开文件并从特定位置写入数据 0x06: 打开文件并从特定位置读入数据 完整的代码实现如下
/* USER CODE BEGIN Header */
/********************************************************************************* file : main.c* brief : Main program body******************************************************************************* attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
//Written by Pegasus Yu in 2023
//NOte: to access W25Qxx, send single line command at first to trigger consequent operation mode for address and data which could be 1-line or 4-line
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include main.h
#include fatfs.h/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include string.h
#include usart.h
#include W25QXX_QSPI.h
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{__IO uint32_t firstms, secondms;__IO uint32_t counter 0;firstms HAL_GetTick()1;secondms firstms1;while(uwTick!firstms) ;while(uwTick!secondms) counter;usDelayBase ((float)counter)/1000;
}void PY_Delay_us_t(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t usNum (uint32_t)(Delay*usDelayBase);delayReg 0;while(delayReg!usNum) delayReg;
}void PY_usDelayOptimize(void)
{__IO uint32_t firstms, secondms;__IO float coe 1.0;firstms HAL_GetTick();PY_Delay_us_t(1000000) ;secondms HAL_GetTick();coe ((float)1000)/(secondms-firstms);usDelayBase coe*usDelayBase;
}void PY_Delay_us(uint32_t Delay)
{__IO uint32_t delayReg;__IO uint32_t msNum Delay/1000;__IO uint32_t usNum (uint32_t)((Delay%1000)*usDelayBase);if(msNum0) HAL_Delay(msNum);delayReg 0;while(delayReg!usNum) delayReg;
}
/* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/QSPI_HandleTypeDef hqspi;UART_HandleTypeDef huart1;/* USER CODE BEGIN PV */
uint8_t uart1_rx[16];
uint8_t cmd;uint8_t Flash_mount_status 0; //FLASH fats mount status indication (0: unmount; 1: mount)
uint8_t FATS_Buff[_MAX_SS]; //Buffer for f_mkfs() operationFRESULT retFLASH;
FIL file;
FATFS *fs;UINT bytesread;
UINT byteswritten;
uint8_t rBuffer[20]; //Buffer for read
uint8_t WBuffer[20] {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}; //Buffer for write#define user_sector_byte_size 512
uint8_t flashbuffer[user_sector_byte_size];
/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_QUADSPI_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 *//*
QSPI TX in block mode for command byte
cmd: command to be sent to device
addr: address to be sent to device
mode: operation mode set asmode[1:0] for command transmission mode ( 00: no command; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )mode[3:2] for address transmission mode ( 00: no address; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )mode[5:4] for address length ( 00:8-bit address; 01: 16-bit address; 10: 24-bit address; 11: 32-bit address )mode[7:6] for data transmission mode ( 00: no command; 01: single-line transmission; 10: dual-line transmission; 11: four-line transmission )
dmcycle: dummy clock cycle
*/
HAL_StatusTypeDef QSPI_Send_CMD(uint8_t cmd,uint32_t addr,uint8_t mode,uint8_t dmcycle)
{QSPI_CommandTypeDef Cmdhandler;Cmdhandler.Instructioncmd; //set cmdCmdhandler.Addressaddr; //set addressCmdhandler.DummyCyclesdmcycle; //set dummy circle number/*set cmd transmission mode*/if(((mode0)0x03) 0)Cmdhandler.InstructionModeQSPI_INSTRUCTION_NONE;else if(((mode0)0x03) 1)Cmdhandler.InstructionModeQSPI_INSTRUCTION_1_LINE;else if(((mode0)0x03) 2)Cmdhandler.InstructionModeQSPI_INSTRUCTION_2_LINES;else if(((mode0)0x03) 3)Cmdhandler.InstructionModeQSPI_INSTRUCTION_4_LINES;/*set address transmission mode*/if(((mode2)0x03) 0)Cmdhandler.AddressModeQSPI_ADDRESS_NONE;else if(((mode2)0x03) 1)Cmdhandler.AddressModeQSPI_ADDRESS_1_LINE;else if(((mode2)0x03) 2)Cmdhandler.AddressModeQSPI_ADDRESS_2_LINES;else if(((mode2)0x03) 3)Cmdhandler.AddressModeQSPI_ADDRESS_4_LINES;/*set address length*/if(((mode4)0x03) 0)Cmdhandler.AddressSizeQSPI_ADDRESS_8_BITS;else if(((mode4)0x03) 1)Cmdhandler.AddressSizeQSPI_ADDRESS_16_BITS;else if(((mode4)0x03) 2)Cmdhandler.AddressSizeQSPI_ADDRESS_24_BITS;else if(((mode4)0x03) 3)Cmdhandler.AddressSizeQSPI_ADDRESS_32_BITS;/*set data transmission mode*/if(((mode6)0x03) 0)Cmdhandler.DataModeQSPI_DATA_NONE;else if(((mode6)0x03) 1)Cmdhandler.DataModeQSPI_DATA_1_LINE;else if(((mode6)0x03) 2)Cmdhandler.DataModeQSPI_DATA_2_LINES;else if(((mode6)0x03) 3)Cmdhandler.DataModeQSPI_DATA_4_LINES;Cmdhandler.SIOOModeQSPI_SIOO_INST_EVERY_CMD; /*Send instruction on every transaction*/Cmdhandler.AlternateByteModeQSPI_ALTERNATE_BYTES_NONE; /*No alternate bytes*/Cmdhandler.DdrModeQSPI_DDR_MODE_DISABLE; /*Double data rate mode disabled*/Cmdhandler.DdrHoldHalfCycleQSPI_DDR_HHC_ANALOG_DELAY; /*Delay the data output using analog delay in DDR mode*/return HAL_QSPI_Command(hqspi,Cmdhandler,5000);
}//QSPI RX in block mode for data
//buf : buffer address for RX data
//datalen : RX data length
//return : 0, OK
// others, error code
HAL_StatusTypeDef QSPI_Receive(uint8_t* buf,uint32_t datalen)
{hqspi.Instance-DLRdatalen-1;return HAL_QSPI_Receive(hqspi,buf,5000);
}//QSPI TX in block mode for data
//buf : buffer address for TX data
//datalen : TX data length
//return : 0, OK
// others, error code
HAL_StatusTypeDef QSPI_Transmit(uint8_t* buf,uint32_t datalen)
{hqspi.Instance-DLRdatalen-1;return HAL_QSPI_Transmit(hqspi,buf,5000);
}extern char USERPath[4];
/* USER CODE END 0 *//*** brief The application entry point.* retval int*/
int main(void)
{/* USER CODE BEGIN 1 */Flash_mount_status 0;uint32_t FLASH_Read_Size;char * dpath 0:; //Disk Pathfor(uint8_t i0; i4; i){USERPath[i] *(dpathi);}const TCHAR* filepath 0:test.txt;/* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_QUADSPI_Init();MX_FATFS_Init();/* USER CODE BEGIN 2 */PY_usDelayTest();PY_usDelayOptimize();HAL_UART_Receive_IT(huart1, uart1_rx, 1);W25QXX_Init();/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){if(cmd0x01) //Read ID{cmd 0;printf(Flash ID 0x%x\r\n\r\n, W25QXX_ReadID());printf(W25Q80_ID: 0XEF13\r\n);printf(W25Q16_ID: 0XEF14\r\n);printf(W25Q32_ID: 0XEF15\r\n);printf(W25Q64_ID: 0XEF16\r\n);printf(W25Q128_ID: 0XEF17\r\n);printf(W25Q256_ID: 0XEF18\r\n);printf(W25Q512_ID: 0XEF18\r\n);printf(W25Q1024_ID: 0XEF20\r\n);}else if(cmd2) //Flash File System Mount{cmd 0;retFLASHf_mount(USERFatFS, (TCHAR const*)USERPath, 1);if (retFLASH ! FR_OK){printf(File system mount failure: %d\r\n, retFLASH);if(retFLASHFR_NO_FILESYSTEM){printf(No file system. Now to format......\r\n);retFLASH f_mkfs((TCHAR const*)USERPath, FM_FAT, 1024, FATS_Buff, sizeof(FATS_Buff)); //FLASH formattingif(retFLASH FR_OK){printf(FLASH formatting success!\r\n);}else{printf(FLASH formatting failure!\r\n);}}}else{Flash_mount_status 1;printf(File system mount success\r\n);}}else if(cmd3) //File creation and write{cmd 0;if(Flash_mount_status0) printf(\r\nFLASH File system not mounted: %d\r\n,retFLASH);else{retFLASH f_open( file, filepath, FA_CREATE_ALWAYS | FA_WRITE ); //Open or create fileif(retFLASH FR_OK){printf(\r\nFile open or creation successful\r\n);retFLASH f_write( file, (const void *)WBuffer, sizeof(WBuffer), byteswritten); //Write dataif(retFLASH FR_OK){printf(\r\nFile write successful\r\n);}else{printf(\r\nFile write error: %d\r\n,retFLASH);}f_close(file); //Close file}else{printf(\r\nFile open or creation error %d\r\n,retFLASH);}}}else if(cmd4) //File read{cmd 0;if(Flash_mount_status0) printf(\r\nFLASH File system not mounted: %d\r\n,retFLASH);else{retFLASH f_open( file, filepath, FA_OPEN_EXISTING | FA_READ); //Open fileif(retFLASH FR_OK){printf(\r\nFile open successful\r\n);retFLASH f_read( file, (void *)rBuffer, sizeof(rBuffer), bytesread); //Read dataif(retFLASH FR_OK){printf(\r\nFile read successful\r\n);PY_Delay_us_t(200000);FLASH_Read_Size sizeof(rBuffer);for(uint16_t i 0;i FLASH_Read_Size;i){printf(%d , rBuffer[i]);}printf(\r\n);}else{printf(\r\nFile read error: %d\r\n, retFLASH);}f_close(file); //Close file}else{printf(\r\nFile open error: %d\r\n, retFLASH);}}}else if(cmd5) //File locating write{cmd 0;if(Flash_mount_status0) printf(\r\nFLASH File system not mounted: %d\r\n,retFLASH);else{retFLASH f_open( file, filepath, FA_CREATE_ALWAYS | FA_WRITE); //Open or create fileif(retFLASH FR_OK){printf(\r\nFile open or creation successful\r\n);retFLASHf_lseek( file, f_tell(file) sizeof(WBuffer) ); //move file operation pointer, f_tell(file) gets file head locatingif(retFLASH FR_OK){retFLASH f_write( file, (const void *)WBuffer, sizeof(WBuffer), byteswritten);if(retFLASH FR_OK){printf(\r\nFile locating write successful\r\n);}else{printf(\r\nFile locating write error: %d\r\n, retFLASH);}}else{printf(\r\nFile pointer error: %d\r\n,retFLASH);}f_close(file); //Close file}else{printf(\r\nFile open or creation error %d\r\n,retFLASH);}}}else if(cmd6) //File locating read{cmd 0;if(Flash_mount_status0) printf(\r\nFLASH File system not mounted: %d\r\n,retFLASH);else{retFLASH f_open(file, filepath, FA_OPEN_EXISTING | FA_READ); //Open fileif(retFLASH FR_OK){printf(\r\nFile open successful\r\n);retFLASH f_lseek(file,f_tell(file) sizeof(WBuffer)/2); //move file operation pointer, f_tell(file) gets file head locatingif(retFLASH FR_OK){retFLASH f_read( file, (void *)rBuffer, sizeof(rBuffer), bytesread);if(retFLASH FR_OK){printf(\r\nFile locating read successful\r\n);PY_Delay_us_t(200000);FLASH_Read_Size sizeof(rBuffer);for(uint16_t i 0;i FLASH_Read_Size;i){printf(%d ,rBuffer[i]);}printf(\r\n);}else{printf(\r\nFile locating read error: %d\r\n,retFLASH);}}else{printf(\r\nFile pointer error: %d\r\n,retFLASH);}f_close(file);}else{printf(\r\nFile open error: %d\r\n,retFLASH);}}}/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** brief System Clock Configuration* retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct {0};RCC_ClkInitTypeDef RCC_ClkInitStruct {0};/** Supply configuration update enable*/HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);/** Configure the main internal regulator output voltage*/__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}__HAL_RCC_SYSCFG_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType RCC_OSCILLATORTYPE_HSI;RCC_OscInitStruct.HSIState RCC_HSI_DIV1;RCC_OscInitStruct.HSICalibrationValue RCC_HSICALIBRATION_DEFAULT;RCC_OscInitStruct.PLL.PLLState RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource RCC_PLLSOURCE_HSI;RCC_OscInitStruct.PLL.PLLM 4;RCC_OscInitStruct.PLL.PLLN 60;RCC_OscInitStruct.PLL.PLLP 2;RCC_OscInitStruct.PLL.PLLQ 2;RCC_OscInitStruct.PLL.PLLR 2;RCC_OscInitStruct.PLL.PLLRGE RCC_PLL1VCIRANGE_3;RCC_OscInitStruct.PLL.PLLVCOSEL RCC_PLL1VCOWIDE;RCC_OscInitStruct.PLL.PLLFRACN 0;if (HAL_RCC_OscConfig(RCC_OscInitStruct) ! HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2|RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;RCC_ClkInitStruct.SYSCLKSource RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.SYSCLKDivider RCC_SYSCLK_DIV1;RCC_ClkInitStruct.AHBCLKDivider RCC_HCLK_DIV2;RCC_ClkInitStruct.APB3CLKDivider RCC_APB3_DIV2;RCC_ClkInitStruct.APB1CLKDivider RCC_APB1_DIV2;RCC_ClkInitStruct.APB2CLKDivider RCC_APB2_DIV2;RCC_ClkInitStruct.APB4CLKDivider RCC_APB4_DIV2;if (HAL_RCC_ClockConfig(RCC_ClkInitStruct, FLASH_LATENCY_4) ! HAL_OK){Error_Handler();}
}/*** brief QUADSPI Initialization Function* param None* retval None*/
static void MX_QUADSPI_Init(void)
{/* USER CODE BEGIN QUADSPI_Init 0 *//* USER CODE END QUADSPI_Init 0 *//* USER CODE BEGIN QUADSPI_Init 1 *//* USER CODE END QUADSPI_Init 1 *//* QUADSPI parameter configuration*/hqspi.Instance QUADSPI;hqspi.Init.ClockPrescaler 9;hqspi.Init.FifoThreshold 4;hqspi.Init.SampleShifting QSPI_SAMPLE_SHIFTING_HALFCYCLE;hqspi.Init.FlashSize 25;hqspi.Init.ChipSelectHighTime QSPI_CS_HIGH_TIME_5_CYCLE;hqspi.Init.ClockMode QSPI_CLOCK_MODE_0;hqspi.Init.FlashID QSPI_FLASH_ID_1;hqspi.Init.DualFlash QSPI_DUALFLASH_DISABLE;if (HAL_QSPI_Init(hqspi) ! HAL_OK){Error_Handler();}/* USER CODE BEGIN QUADSPI_Init 2 *//* USER CODE END QUADSPI_Init 2 */}/*** brief USART1 Initialization Function* param None* retval None*/
static void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance USART1;huart1.Init.BaudRate 115200;huart1.Init.WordLength UART_WORDLENGTH_8B;huart1.Init.StopBits UART_STOPBITS_1;huart1.Init.Parity UART_PARITY_NONE;huart1.Init.Mode UART_MODE_TX_RX;huart1.Init.HwFlowCtl UART_HWCONTROL_NONE;huart1.Init.OverSampling UART_OVERSAMPLING_16;huart1.Init.OneBitSampling UART_ONE_BIT_SAMPLE_DISABLE;huart1.Init.ClockPrescaler UART_PRESCALER_DIV1;huart1.AdvancedInit.AdvFeatureInit UART_ADVFEATURE_NO_INIT;if (HAL_UART_Init(huart1) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_SetTxFifoThreshold(huart1, UART_TXFIFO_THRESHOLD_1_8) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_SetRxFifoThreshold(huart1, UART_RXFIFO_THRESHOLD_1_8) ! HAL_OK){Error_Handler();}if (HAL_UARTEx_DisableFifoMode(huart1) ! HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}/*** brief GPIO Initialization Function* param None* retval None*/
static void MX_GPIO_Init(void)
{/* GPIO Ports Clock Enable */__HAL_RCC_GPIOE_CLK_ENABLE();__HAL_RCC_GPIOB_CLK_ENABLE();__HAL_RCC_GPIOD_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();}/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{if(huarthuart1){cmd uart1_rx[0];HAL_UART_Receive_IT(huart1, uart1_rx, 1);}}
/* USER CODE END 4 *//*** brief This function is executed in case of error occurrence.* retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef USE_FULL_ASSERT
/*** brief Reports the name of the source file and the source line number* where the assert_param error has occurred.* param file: pointer to the source file name* param line: assert_param error line source number* retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf(Wrong parameters value: file %s on line %d\r\n, file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
STM32例程测试
串口指令0x01测试效果如下 串口指令0x02测试效果如下 串口指令0x03测试效果如下 串口指令0x04测试效果如下 串口指令0x05测试效果如下 串口指令0x06测试效果如下
STM32例程下载
STM32H750VBT6 QSPI总线FATS文件读写FLASH W25QXX例程下载
–End–