河北省建设厅网站运行条件,阿里云网站建设考试认证题,高级网页设计师培训班,搭建wordpress博客系统这篇文章构建了一个基本“Block”#xff0c;并在此“Block”基础上引入了一个新的维度“cardinality”(字母“C”在图、表中表示这一维度)。深度网络的另外两个维度分别为depth#xff08;层数#xff09;、width#xff08;width指一个层的channel的数目#xff09;。 首…这篇文章构建了一个基本“Block”并在此“Block”基础上引入了一个新的维度“cardinality”(字母“C”在图、表中表示这一维度)。深度网络的另外两个维度分别为depth层数、widthwidth指一个层的channel的数目。 首先我们先了解一个这个“Block”是如何构建的如下图所示ResNeXt是这篇论文提出模型的简化表示 左边是标准残差网络“Block”右图是作者引入的“Block”。这新的Block有什么优势呢作者应该是受到了Inception models的启发论文中指出“Unlike VGG-nets the family of Inception models have demonstrated that carefully designed topologies are able to achieve compelling accuracy with low theoretical complexity”。再进一步就是“The split-transform-merge behavior of Inception modules is expected to approach the representational power of large and dense layers, but at a considerably lower computational complexity”。说得简单点就是“在达到大型、紧凑深度网络的准确率的同时降低模型的计算复杂度”这就是这篇paper追求的一个效果。Figure 1右边就是就是采用split-transform-merge策略构建的。 Inception models在实际应用时有一个很不方便的地方每一个分支的卷积核大小、尺寸是“定制的”不同的“Block”之间也是“定制的”。如果我们想要应用这一模型或者在这一框架下设计一个新的网络那么上述“定制化”的特点会引入很多“超参数”。如果你自己设计过网络或者更改过现有网络你就会理解“超参数”过多对于我们的设计简直就是一个“灾难”。此时如果没有一个合适的设计策略的话说直白点就是“靠天吃饭”了。 受VGG/ResNets成功的启发作者总结了以下两个设计“Block”原则 “If producing spatial maps of the same size, the blocks share the same hyper-parameters(width and filter sizes)”Each time when the spatial map is downsampled by a factor of 2, the width of the blocks is multiplied by a factor of 2除此之外所有的“Block”具有相同的拓扑结构。作者给出了一些设计的模板再结合上述两条原则我们基本可以构建所需要的任意网络了(是不是觉得网络结构的设计一下子变得简单了很多)模板如下表所示 这还没有结束作者有给出了Figure 1左边结构的两种等价表述形式如下图所示 这就极大的方便了我们的实现。此时Alexnet引入的group convolution概念就有了用武之地当时引入这一概念是受GPU条件的限制。采用Figure 3c的形式可以在Caffe中直接实现而无需更改任何源代码。 下面我们通过实验效果看看这一模型的威力 由Table 4可以得出即使复杂度减少一半该模型依然可以取得比ResNet-200还好的实验效果达到了作者追求的“在达到复杂、紧凑深度模型准确率的同时减少计算复杂度的目的”。 总结 作者要求“Block”具有相同的拓扑结构同时给出“Blcok”扩展的设计原则和模板通过repeating building blocks可以得出网络结构极大的简化了网络结构设计的工作量。相同实现不同等价形式的给出一能加深我们理解二能为我们提供快速实现的可能。这真的是一篇佳作哦。转载于:https://www.cnblogs.com/everyday-haoguo/p/Note-ResNeXt.html