当前位置: 首页 > news >正文

商丘网站开发怎么注册网站免费的吗

商丘网站开发,怎么注册网站免费的吗,百度2022新版下载,永久域名注册引言 本文的目的#xff0c;是向您展示如何使用pandas来执行一些常见的Excel任务。有些例子比较琐碎#xff0c;但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要。作为额外的福利#xff0c;我将会进行一些模糊字符串匹配#xff0c;以此来展示一…引言 本文的目的是向您展示如何使用pandas来执行一些常见的Excel任务。有些例子比较琐碎但我觉得展示这些简单的东西与那些你可以在其他地方找到的复杂功能同等重要。作为额外的福利我将会进行一些模糊字符串匹配以此来展示一些小花样以及展示pandas是如何利用完整的Python模块系统去做一些在Python中是简单但在Excel中却很复杂的事情的。 有道理吧让我们开始吧。 为某行添加求和项 我要介绍的第一项任务是把某几列相加然后添加一个总和栏。 首先我们将excel 数据 导入到pandas数据框架中。 import pandas as pd import numpy as np df pd.read_excel(excel-comp-data.xlsx) df.head()我们想要添加一个总和栏来显示Jan、Feb和Mar三个月的销售总额。 在Excel和pandas中这都是简单直接的。对于Excel我在J列中添加了公式sum(G2:I2)。在Excel中看上去是这样的下面我们是这样在pandas中操作的 df[total] df[Jan] df[Feb] df[Mar] df.head()接下来让我们对各列计算一些汇总信息以及其他值。如下Excel表所示我们要做这些工作如你所见我们在表示月份的列的第17行添加了SUM(G2:G16)来取得每月的总和。 进行在pandas中进行列级别的分析很简单。下面是一些例子 df[Jan].sum(), df[Jan].mean(),df[Jan].min(),df[Jan].max() (1462000, 97466.666666666672, 10000, 162000) 现在我们要把每月的总和相加得到它们的和。这里pandas和Excel有点不同。在Excel的单元格里把每个月的总和相加很简单。由于pandas需要维护整个DataFrame的完整性所以需要一些额外的步骤。 首先建立所有列的总和栏 sum_rowdf[[Jan,Feb,Mar,total]].sum() sum_row Jan 1462000 Feb 1507000 Mar 717000 total 3686000 dtype: int64 这很符合直觉不过如果你希望将总和值显示为表格中的单独一行你还需要做一些微调。 我们需要把数据进行变换把这一系列数字转换为DataFrame这样才能更加容易的把它合并进已经存在的数据中。T 函数可以让我们把按行排列的数据变换为按列排列。 df_sumpd.DataFrame(datasum_row).T df_sum在计算总和之前我们要做的最后一件事情是添加丢失的列。我们使用reindex来帮助我们完成。技巧是添加全部的列然后让pandas去添加所有缺失的数据。 df_sumdf_sum.reindex(columnsdf.columns) df_sum现在我们已经有了一个格式良好的DataFrame我们可以使用append来把它加入到已有的内容中。 df_finaldf.append(df_sum,ignore_indexTrue) df_final.tail()额外的数据变换 另外一个例子让我们尝试给数据集添加状态的缩写。 对于Excel最简单的方式是添加一个新的列对州名使用vlookup函数并填充缩写栏。 我进行了这样的操作下面是其结果的截图你可以注意到在进行了vlookup后有一些数值并没有被正确的取得。这是因为我们拼错了一些州的名字。在Excel中处理这一问题是一个巨大的挑战对于大型数据集而言 幸运的是使用pandas我们可以利用强大的python生态系统。考虑如何解决这类麻烦的数据问题我考虑进行一些模糊文本匹配来决定正确的值。 幸运的是其他人已经做了很多这方面的工作。fuzzy wuzzy库包含一些非常有用的函数来解决这类问题。首先要确保你安装了他。 我们需要的另外一段代码是州名与其缩写的映射表。而不是亲自去输入它们谷歌一下你就能找到这段代码code。 首先导入合适的fuzzywuzzy函数并且定义我们的州名映射表。 from fuzzywuzzy import fuzz from fuzzywuzzy import process state_to_code {VERMONT: VT, GEORGIA: GA, IOWA: IA, Armed Forces Pacific: AP, GUAM: GU, KANSAS: KS, FLORIDA: FL, AMERICAN SAMOA: AS, NORTH CAROLINA: NC, HAWAII: HI, NEW YORK: NY, CALIFORNIA: CA, ALABAMA: AL, IDAHO: ID, FEDERATED STATES OF MICRONESIA: FM, Armed Forces Americas: AA, DELAWARE: DE, ALASKA: AK, ILLINOIS: IL, Armed Forces Africa: AE, SOUTH DAKOTA: SD, CONNECTICUT: CT, MONTANA: MT, MASSACHUSETTS: MA, PUERTO RICO: PR, Armed Forces Canada: AE, NEW HAMPSHIRE: NH, MARYLAND: MD, NEW MEXICO: NM, MISSISSIPPI: MS, TENNESSEE: TN, PALAU: PW, COLORADO: CO, Armed Forces Middle East: AE, NEW JERSEY: NJ, UTAH: UT, MICHIGAN: MI, WEST VIRGINIA: WV, WASHINGTON: WA, MINNESOTA: MN, OREGON: OR, VIRGINIA: VA, VIRGIN ISLANDS: VI, MARSHALL ISLANDS: MH, WYOMING: WY, OHIO: OH, SOUTH CAROLINA: SC, INDIANA: IN, NEVADA: NV, LOUISIANA: LA, NORTHERN MARIANA ISLANDS: MP, NEBRASKA: NE, ARIZONA: AZ, WISCONSIN: WI, NORTH DAKOTA: ND, Armed Forces Europe: AE, PENNSYLVANIA: PA, OKLAHOMA: OK, KENTUCKY: KY, RHODE ISLAND: RI, DISTRICT OF COLUMBIA: DC, ARKANSAS: AR, MISSOURI: MO, TEXAS: TX, MAINE: ME} 这里有些介绍模糊文本匹配函数如何工作的例子。 process.extractOne(Minnesotta,choicesstate_to_code.keys()) (MINNESOTA, 95) process.extractOne(AlaBAMMazzz,choicesstate_to_code.keys(),score_cutoff80) 现在我知道它是如何工作的了我们创建自己的函数来接受州名这一列的数据然后把他转换为一个有效的缩写。这里我们使用score_cutoff的值为80。你可以做一些调整看看哪个值对你的数据来说比较好。你会注意到返回值要么是一个有效的缩写要么是一个np.nan 所以域中会有一些有效的值。 def convert_state(row): abbrev process.extractOne(row[state],choicesstate_to_code.keys(),score_cutoff80) if abbrev: return state_to_code[abbrev[0]] return np.nan 把这列添加到我们想要填充的单元格然后用NaN填充它 df_final.insert(6, abbrev, np.nan) df_final.head()我们使用apply 来把缩写添加到合适的列中。 df_final[abbrev] df_final.apply(convert_state, axis1) df_final.tail()我觉的这很酷。我们已经开发出了一个非常简单的流程来智能的清理数据。显然当你只有15行左右数据的时候这没什么了不起的。但是如果是15000行呢在Excel中你就必须进行一些人工清理了。 分类汇总 在本文的最后一节中让我们按州来做一些分类汇总subtotal。 在Excel中我们会用subtotal 工具来完成。输出如下在pandas中创建分类汇总是使用groupby 来完成的。 df_subdf_final[[abbrev,Jan,Feb,Mar,total]].groupby(abbrev).sum() df_sub然后我们想要通过对data frame中所有的值使用 applymap 来把数据单位格式化为货币。 def money(x): return ${:,.0f}.format(x) formatted_df df_sub.applymap(money) formatted_df格式化看上去进行的很顺利现在我们可以像之前那样获取总和了。 sum_rowdf_sub[[Jan,Feb,Mar,total]].sum() sum_row Jan 1462000 Feb 1507000 Mar 717000 total 3686000 dtype: int64 把值变换为列然后进行格式化。 df_sub_sumpd.DataFrame(datasum_row).T df_sub_sumdf_sub_sum.applymap(money) df_sub_sum最后把总和添加到DataFrame中。 final_table formatted_df.append(df_sub_sum) final_table你可以注意到总和行的索引号是‘0。我们想要使用rename 来重命名它。 final_table final_table.rename(index{0:Total}) final_table结论 到目前为止大部分人都已经知道使用pandas可以对数据做很多复杂的操作——就如同Excel一样。因为我一直在学习pandas但我发现我还是会尝试记忆我是如何在Excel中完成这些操作的而不是在pandas中。我意识到把它俩作对比似乎不是很公平——它们是完全不同的工具。但是我希望能接触到哪些了解Excel并且想要学习一些可以满足分析他们数据需求的其他替代工具的那些人。我希望这些例子可以帮助到其他人让他们有信心认为他们可以使用pandas来替换他们零碎复杂的Excel进行数据操作。
http://www.zqtcl.cn/news/63594/

相关文章:

  • 最专业的佛山网站建设价格织梦cms网站搬家
  • 微网站建设报价新兴街做网站公司
  • joomla网站模板青岛高端网站设计公司
  • 网站顶部布局微网站促销版
  • 网站制作公司多少钱微信怎么建公众号
  • 北京网站建设制作开发企业网络组网
  • 男女做羞羞漫画网站wordpress下载教程
  • 廊坊微信网站建设做网站要学的代码
  • 怎么做区块链网站湖南建设人力资源官方网站
  • 网站建设及运维合同电子商务公司网站建立
  • 承接网站开发 app开发wordpress网站管理
  • 建网站要多少钱软件开发者能看到手机信息吗
  • 在华图做网站编辑安全的营销型网站制作
  • 网站建设公司违法网页制作工具可分为
  • 免费asp网站模板带后台电商运营主要做什么
  • 安仁网站制作包头市做网站公司
  • 河南省网站建设哪家好网站策划书格式
  • 网站建设公司山而asp网站图片轮播代码
  • 佛山网站建站建设电商网站的付款功能
  • 营销网站的策划方案怎么做免费网上商城模板
  • 上海中小企业网站百度广告搜索推广
  • 网站建设的一般流程是什么意思保定网页模板建站
  • 营销导向网站建设流程做网站找合作伙伴
  • 信息网站 微站网站seo收录
  • 公司网站怎么做才高大上wordpress添加爬虫数据
  • 做搬运的话哪个网站好html模板图片
  • 最新的购物网站 开拙人营造设计公司官网
  • 网站建设运营方案温州网站排名优化公司哪家好
  • 网站上的招牌图怎么做python免费编程软件
  • 北京php培训网站建设济宁建设公司网站