当前位置: 首页 > news >正文

广州网站建设网站WordPress404

广州网站建设网站,WordPress404,凡科网做网站要钱吗,支持wordpress免费#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 # 接收两个参数#xff0c;一个是文件名#xff0c;一个值#xff0c;如果值为1#xff0c;接收的是彩色图片#xff0c;如果值为零#xff0c;接受的是灰度图片。会有一个返回值#xff0c…#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 # 接收两个参数一个是文件名一个值如果值为1接收的是彩色图片如果值为零接受的是灰度图片。会有一个返回值表示返回的图片内容 img cv2.imread(mashiro.jpg,1) # 接收两个参数一个是窗体名称另一个是要显示的内容 cv2.imshow(mashiro,img) # 将程序暂停只有这样才能看到图片,否则图片会一闪而过因为程序结束了如果time.sleep()的话会卡住 cv2.waitKey(0)2. 图片写入#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 img cv2.imread(mashiro.jpg,1) cv2.imwrite(mashiro1.jpg,img)3.不同图片质量保存#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 img cv2.imread(mashiro.jpg,1) cv2.imwrite(mashiro1.jpg,img,[cv2.IMWRITE_JPEG_QUALITY,0]) cv2.imwrite(mashiro2.png,img,[cv2.IMWRITE_PNG_COMPRESSION,0]) # jpg属于有损压缩是以图片的清晰度为代价的数字越小压缩比越高图片质量损失越严重 # png属于无损压缩数字0-9数字越低压缩比越低4.像素操作基础#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 img cv2.imread(mashiro.jpg,1) (a,b,c) img[500,500] print(a,b,c) for i in range(1,100):img[i,i] (255,0,0) cv2.imshow(mashiro,img) cv2.waitKey(0)5.图片缩放#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 img cv2.imread(mashiro.jpg,1) cv2.imshow(mashiro,img) imginfo img.shape height imginfo[0] width imginfo[1] mode imginfo[2] print(imginfo) dstHeight int(height*0.5) dstWidth int(width*0.5) dst cv2.resize(img,(dstWidth,dstHeight)) cv2.imshow(mashiro1,dst) cv2.waitKey(0)6.图片缩放源码实现#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] dstHeight int(height/2) dstWidth int(width/2) dstImage np.zeros((dstHeight,dstWidth,3),np.uint8) for i in range(0,dstHeight): for j in range(0,dstWidth): iNew int(i*(height*1.0/dstHeight)) jNew int(j*(width*1.0/dstWidth))dstImage[i,j] img[iNew,jNew] cv2.imshow(mashiro,dstImage) cv2.waitKey(0)7.图片剪切#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 img cv2.imread(mashiro.jpg,1) imgInfo img.shape dst img[10:600,10:400] cv2.imshow(mashiro,dst) cv2.waitKey(0)8.图片移位#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2,numpy as np img cv2.imread(mashiro.jpg,1) cv2.imshow(mashiro,img) imgInfo img.shape height imgInfo[0] width imgInfo[1] matshift np.float32([[1,0,100],[0,1,200]]) dst cv2.warpAffine(img,matshift,(height,width)) cv2.imshow(mashiro1,dst) cv2.waitKey(0)9.图片移位源码实现#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) imgInfo img.shape cv2.imshow(mashiro,img) dst np.ones(imgInfo,np.uint8) height imgInfo[0] width imgInfo[1] for i in range(0,height): for j in range(0,width-300):dst[i,j] img[i,j] cv2.imshow(mashiro1,dst) cv2.waitKey(0)10.图片镜像#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) imgInfo img.shape cv2.imshow(mashiro,img) dst np.ones(imgInfo,np.uint8) height imgInfo[0] width imgInfo[1] for i in range(0,height): for j in range(0,width):dst[i,j] img[height-1-i,j] cv2.imshow(mashiro1,dst) cv2.waitKey(0)11.图片仿射变换#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) cv2.imshow(mashiro,img) imgInfo img.shape height imgInfo[0] width imgInfo[1] matSrc np.float32([[0,0],[0,height-1],[width-1,0]]) matDst np.float32([[50,50],[300,height-200],[width-300,100]]) matAffine cv2.getAffineTransform(matSrc,matDst) dst cv2.warpAffine(img,matAffine,(width,height)) cv2.imshow(mashiro1,dst) cv2.waitKey(0)12.图片旋转#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) imgInfo img.shape cv2.imshow(mashiro,img) height imgInfo[0] width imgInfo[1] matRotate cv2.getRotationMatrix2D((width*0.5,height*0.5),45,0.5) dst cv2.warpAffine(img,matRotate,(width,height)) cv2.imshow(mashiro1,dst) cv2.waitKey(0)13.闲的蛋疼批量将图片进行上述操作#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import glob import numpy as np all_jpg glob.glob(rC:\Users\Administrator\Desktop\satori\*.jpg) for count,jpg in enumerate(all_jpg):img cv2.imread(jpg,1)imgInfo img.shapeheight imgInfo[0]width imgInfo[1]dst cv2.resize(img,(int(width/2),int(height/2))) cv2.imwrite(rfC:\Users\Administrator\Desktop\satori\scale\{count}.jpg,dst,[cv2.IMWRITE_JPEG_QUALITY,100]) cv2.waitKey(0) ####################################### for count,jpg in enumerate(all_jpg):img cv2.imread(jpg,1)imgInfo img.shapeheight imgInfo[0]width imgInfo[1] matshift np.float32([[1,0,100],[0,1,50]])dst cv2.warpAffine(img,matshift,(width,height)) cv2.imwrite(rfC:\Users\Administrator\Desktop\satori\translation\{count}.jpg,dst) cv2.waitKey(0) ############################ for count,jpg in enumerate(all_jpg):img cv2.imread(jpg,1)imgInfo img.shapeheight imgInfo[0]width imgInfo[1]dst np.zeros(imgInfo,np.uint8) for i in range(0,height): for j in range(0,width):dst[i,j] img[height-1-i,j] cv2.imwrite(rfC:\Users\Administrator\Desktop\satori\flip\{count}.jpg,dst) ####################### for count,jpg in enumerate(all_jpg):img cv2.imread(jpg,1)imgInfo img.shapeheight imgInfo[0]width imgInfo[1] matsrc np.float32([[0,0],[0,height-1],[width-1,0]]) matdst np.float32([[50,50],[int(width/2),int(height/2)],[width-100,height-50]]) matAffine cv2.getAffineTransform(matsrc,matdst)dst cv2.warpAffine(img,matAffine,(width,height)) cv2.imwrite(rfC:\Users\Administrator\Desktop\satori\shear\{count}.jpg,dst) ######################## for count,jpg in enumerate(all_jpg):img cv2.imread(jpg,1)imgInfo img.shapeheight imgInfo[0]width imgInfo[1] matRotate cv2.getRotationMatrix2D((width*0.5,height*0.5),60,0.5)dst cv2.warpAffine(img,matRotate,(width,height)) cv2.imwrite(rfC:\Users\Administrator\Desktop\satori\rotation\{count}.jpg,dst)14.灰度处理#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2,numpy as np img cv2.imread(mashiro.jpg,0) cv2.imshow(mashiro,img) img cv2.imread(b.png,1) dst cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv2.imshow(mmp,dst) cv2.waitKey(0) img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] dst np.zeros((height,width,3),np.uint8) for i in range(0,height): for j in range(0,width):b,g,r img[i,j] gray (int(b)int(g)int(r))/3 dst[i,j] [np.uint8(gray),np.uint8(gray),np.uint8(gray)] cv2.imshow(mmp,dst) cv2.waitKey(0) img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] dst np.zeros((height,width,3),np.uint8) for i in range(0,height): for j in range(0,width):b,g,r img[i,j] b int(b) g int(g) r int(r) gray r*0.9b*0.87r*0.4 dst[i,j] [np.uint8(gray),np.uint8(gray),np.uint8(gray)] cv2.imshow(mashiro1,dst) cv2.waitKey(0)15.颜色反转#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import numpy as np import cv2 img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] gray cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) dst np.zeros((height,width,1),np.uint8) for i in range(0,height): for j in range(0,width): dst[i,j] 255 - gray[i,j] cv2.imshow(mashiro,gray) cv2.imshow(mashiro1,dst) cv2.waitKey(0) # img cv2.imread(mashiro.jpg,1) # imgInfo img.shape # height imgInfo[0] # width imgInfo[1] # #gray cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # # dst np.zeros((height,width,3),np.uint8) # # for i in range(0,height): # for j in range(0,width): # b,g,r img[i,j] # dst[i,j] 255-b,255-g,255-r # # cv2.imshow(mashiro,img) # cv2.imshow(mashiro1,dst) # cv2.waitKey(0)16.马赛克#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] for m in range(200,400): for n in range(100,200): if m%100 and n%100: for i in range(0,10): for j in range(0,10):b,g,r img[m,n]img[im,jn] b,g,r cv2.imshow(mashiro,img) cv2.waitKey(0)17.毛玻璃#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import numpy as np import cv2,random img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] dst np.zeros((height,width,3),np.uint8) mm 8 for m in range(0,height-mm): for n in range(0,width-mm): index int(random.random()*8)b,g,r img[mindex,nindex] dst[m,n] b,g,r cv2.imshow(mashiro,dst) cv2.waitKey(0)18.真白18岁生日快乐 19.图片融合import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) img1 cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] roiH int(height/2) roiW int(width/2) imgROI img[0:roiH,0:roiW] img1ROI img[0:roiH,0:roiW] dst np.zeros((roiH,roiW,3),np.uint8) dst cv2.addWeighted(imgROI,0.5,img1ROI,0.5,0) cv2.imshow(mashiro,dst) cv2.waitKey(0) # 貌似程序有问题20.边缘检测import cv2 import numpy as np import random # 所有边缘检测都是基于灰度处理的因此先要转换成灰度图片 img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] cv2.imshow(mashiro,img) # 1 灰度 gray cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 2 高斯滤波 imgG cv2.GaussianBlur(gray,(3,3),0) # 图片经过卷积 dst cv2.Canny(imgG,50,50) cv2.imshow(mashiro1,dst) cv2.waitKey(0)21.浮雕效果import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) cv2.imshow(mashiro,img) imgInfo img.shape height imgInfo[0] width imgInfo[1] gray cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) dst np.zeros((height,width,1),np.uint8) for i in range(0,height): for j in range(0,width-1): grayP0 int(gray[i,j]) grayP1 int(gray[i,j1]) newP grayP0-grayP1150 if newP255: newP255 elif newP0: newP0 dst[i,j] newP cv2.imshow(mashiro1,dst) cv2.waitKey(0)22.颜色映射import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) cv2.imshow(mashiro,img) imgInfo img.shape height imgInfo[0] width imgInfo[1] dst np.zeros((height,width,3),np.uint8) for m in range(height): for n in range(width):b,g,r img[m,n] b b*1.5 g g*1.3 if b 255: b255 if g255: g255 dst[m,n] b,g,r cv2.imshow(mashiro1,dst) cv2.waitKey(0)23.油画特效import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] gray cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) dst np.zeros((height,width,3),np.uint8) for i in range(4,height-4): for j in range(4,width-4): array1 np.zeros(8,np.uint8) for m in range(-4,4): for n in range(-4,4): p1int(gray[im,jn]/32) array1[p1]array1[p1]1 currentMax array1[0] for k in range(0,8): if currentMax lk for m in range(-4,4): for n in range(-4,4): if gray[im,jn](l*32) and gray[im,jn]((l1)*32):b,g,r img[m,n] dst[i,j] b,g,r cv2.imshow(mashiro,dst) cv2.waitKey(0) # 程序算的会很慢很慢24.线段绘制import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) newImagInfo (500,500,3) dst np.zeros(newImagInfo,np.uint8) # 1.图片信息 2.开始位置 3.结束位置 4.颜色 cv2.line(dst,(100,100),(400,400),(0,0,255)) # 5.线条的宽度 cv2.line(dst,(100,200),(400,200),(0,255,255),20) # 6.线条类型 cv2.line(dst,(100,300),(400,300),(0,255,0),20,cv2.LINE_AA) # 绘制三角形说白了就是三条线段 cv2.line(dst,(200,150),(50,250),(25,100,255)) # 第二条线段的起始位置是第一条线段的终止位置 cv2.line(dst,(50,250),(400,380),(25,100,255)) # 第三条线段的起始位置是第一条线段的起始位置终止位置是第二条线段的终止位置 cv2.line(dst,(200,150),(400,380),(25,100,255)) cv2.imshow(mashiro,dst) cv2.waitKey(0)25.矩形圆形任意多边形绘制import cv2 import numpy as np newImgInfo 500,500,3 dst np.zeros(newImgInfo,np.uint8) # 1.图片 2.左上角坐标 3.右下角坐标 4.颜色 5.是否填充(大于零线条宽度小于零是否填充) cv2.rectangle(dst,(50,100),(200,300),(255,0,0),-1) # 1.图片 2.圆心 3.半径 4.颜色 cv2.circle(dst,(250,250),(50),(255,0,255),-1,cv2.LINE_AA) # 椭圆 1.图片 2.椭圆圆心 3.长轴和短轴的长度 4.偏转角度 5.圆弧起始角度 6.圆弧终止角度 7.颜色 8.是否填充 cv2.ellipse(dst,(256,256),(150,100),0,0,180,(255,255,0),-1,cv2.LINE_AA) # 定义任意角度 points np.array([[150,50],[140,140],[200,170],[250,250],[150,50]],np.int32) # (5,2) points points.reshape((-1,1,2)) # (5,1,2) cv2.polylines(dst,[points],True,(0,255,255)) cv2.imshow(mashiro,dst) cv2.waitKey(0)26.文字绘制#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) font cv2.FONT_HERSHEY_COMPLEX # 1.图片 2.文字的内容 3.写入的坐标 4.字体 5.字体大小 6.颜色 7字体的粗细 8.线条类型 cv2.putText(img,hello, i am mashiro····,(100,300),font,1,(200,100,255),2,cv2.LINE_AA) cv2.imshow(mashiro,img) cv2.waitKey(0)27.图片绘制#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 img cv2.imread(mashiro.jpg,1) height int(img.shape[0]*0.2) width int(img.shape[1]*0.2) imgResize cv2.resize(img,(width,height)) for i in range(height): for j in range(width):img[i200,j350] imgResize[i,j] cv2.imshow(mashiro,img) cv2.waitKey(0)28.彩色图片直方图#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np def ImageHist(img,e_type): color (255,255,255) windowName gray if e_type 31: color (255,0,0) windowName b hist elif e_type 32: color (0,255,0) windowName g hist elif e_type 33: color (0,0,255) windowName r hist # 一定要用列表的形式 1.图片 2.计算直方图的通道 3.蒙版mask 4.直方图的size多少种 5直方图中各个像素的值hist cv2.calcHist([img],[0],None,[256],[0.0,255.0]) minV,maxV,minV_indice,maxL_indice cv2.minMaxLoc(hist) histImg np.zeros([256,256,3],np.uint8) for h in range(256): interNomal int(hist[h]*256/maxV) cv2.line(histImg,(h,256),(h,256-interNomal),color) cv2.imshow(windowName,histImg) return histImg img cv2.imread(mashiro.jpg,3) channels cv2.split(img) # RGB ----R G B for i in range(3): ImageHist(channels[i],31i) cv2.waitKey(0)29.灰度直方图均衡化#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) gray cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv2.imshow(mashiro,gray) dst cv2.equalizeHist(gray) cv2.imshow(mashiro1,dst) cv2.waitKey(0)30.彩色直方图均衡化#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,3) cv2.imshow(mashiro,img) b,g,r cv2.split(img) # split之后 得到三个通道的数据 bH cv2.equalizeHist(b) gH cv2.equalizeHist(g) rH cv2.equalizeHist(r) result cv2.merge((bH,gH,rH)) # 将三个通道合成在一起 cv2.imshow(mashiro1,result) cv2.waitKey(0)31.YUV直方图均衡化#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) imgYUV cv2.cvtColor(img,cv2.COLOR_BGR2YCrCb) cv2.imshow(mashiro,img) channelYUV cv2.split(imgYUV) channelYUV[0] cv2.equalizeHist(channelYUV[0]) channels cv2.merge(channelYUV) result cv2.cvtColor(channels,cv2.COLOR_YCrCb2BGR) cv2.imshow(mashiro1,result) cv2.waitKey(0)32.图片修补#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) for i in range(200,300):img[i,200] (255,255,255)img[i,2001] (255,255,255)img[i,200-1] (255,255,255) for i in range(150,250):img[250,i] (255,255,255)img[2501,i] (255,255,255)img[250-1,i] (255,255,255) cv2.imwrite(damaged_mashiro.jpg,img) img cv2.imread(damaged_mashiro.jpg,3) cv2.imshow(damaged_mashiro.jpg,img) imgInfo img.shape height imgInfo[0] width imgInfo[1] paint np.zeros((height,width,1),np.uint8) for i in range(200,300): paint[i,200] 255 paint[i,2001] 255 paint[i,200-1] 255 for i in range(150,250): paint[250,i] 255, paint[2501,i] 255 paint[250-1,i] 255 cv2.imshow(paint,paint) imgDst cv2.inpaint(img,paint,3,cv2.INPAINT_TELEA) cv2.imshow(mashiro,imgDst) cv2.waitKey(0)33.亮度增强#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1] dst np.zeros((height,width,3),np.uint8) # 新图片像素的亮度等于原图片像素的亮度加上一个固定值 cv2.imshow(mashiro,img) for i in range(height): for j in range(width):(b,g,r) img[i,j] bb int(b)120 # 自由变换 gg int(g)120 rr int(r)120 if bb 255: bb 255 if gg 255: gg 255 if rr 255: rr 255dst[i,j] img[i,j] cv2.imshow(mashiro1,dst) cv2.waitKey(0)34.磨皮美白#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat # 原理双边滤波 import cv2 img cv2.imread(mashiro.jpg,1) cv2.imshow(mashiro,img) dst cv2.bilateralFilter(img,15,35,35) cv2.imshow(mashiro1,dst) cv2.waitKey(0) # 由于是动漫图片然鹅并看不出什么效果35.高斯滤波#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 img cv2.imread(mashiro.jpg,1) cv2.imshow(mashiro,img) dst cv2.GaussianBlur(img,(5,5),1.5) cv2.imshow(mashiro1,dst) cv2.waitKey(0) # 如果原图上有许多的小点点那么高斯滤波可以过滤掉同时图片也会变得模糊36.均值滤波#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg,1) cv2.imshow(mashiro,img) imgInfo img.shape height imgInfo[0] width imgInfo[1] dst np.zeros((height,width,3),np.uint8) for i in range(3,height-3): for j in range(3,width-3): sum_b int(0) sum_g int(0) sum_r int(0) for m in range(-3,3): for n in range(-3,3):b,g,r img[im,jn] sum_b sum_b int(b) sum_g sum_g int(g) sum_r sum_r int(r) b np.uint8(sum_b/36) g np.uint8(sum_g/36) r np.uint8(sum_r/36) dst[i,j] b,g,r cv2.imshow(mashiro1,dst) cv2.waitKey(0) # 然而并无卵用程序还很慢37.中值滤波#!/usr/bin/env python # -*- coding:utf-8 -*- # author:love_cat import cv2 import numpy as np img cv2.imread(mashiro.jpg, 1) imgInfo img.shape height imgInfo[0] width imgInfo[1] img cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.imshow(mashiro, img) dst np.zeros((height, width, 3), np.uint8) collect np.zeros(9, np.uint8) for i in range(1, height-1): for j in range(1, width-1): k 0 for m in range(-1, 2): for n in range(-1, 2):gray img[i m, j n] collect[k] gray k k 1 for k in range(0, 9): p1 collect[k] for t in range(k 1, 9): if p1 collect[t]: mid collect[t] collect[t] p1 p1 mid dst[i, j] collect[4] cv2.imshow(mashiro1,dst) cv2.waitKey(0) # 效果并不理想,程序也很慢38.视频分解成图片# 视频分解图片 # 1 load 2 info 3 parse 4 imshow imwrite import cv2 # 打开一个视频获取一个句柄 cap cv2.VideoCapture(r01.mp4) # 判断是否打开 isOpened cap.isOpened print(isOpened) # 获取视频的帧率 fps cap.get(cv2.CAP_PROP_FPS) # 获取图片的宽度和高度 width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) print(帧率%s宽度%s,高度%s % (fps, width, height)) i 0 while isOpened: if i 100: break # 我们只获取100张图片 else: i 1 # 读取每一张flagframe # flag表示是否读取成功 # frame表示图片的内容 (flag, frame) cap.read() fileName imagestr(i).jpg print(fileName) if flag: cv2.imwrite(fileName, frame, [cv2.IMWRITE_JPEG_QUALITY, 100]) # 表示精度最高 print(end!!!) # 程序运行结果帧率15.0宽度1280,高度720 image1.jpg image2.jpg image3.jpg image4.jpg image5.jpg image6.jpg image7.jpg image8.jpg image9.jpg image10.jpg image11.jpg image12.jpg image13.jpg image14.jpg image15.jpg image16.jpg image17.jpg image18.jpg image19.jpg image20.jpg image21.jpg image22.jpg image23.jpg image24.jpg image25.jpg image26.jpg image27.jpg image28.jpg image29.jpg image30.jpg image31.jpg image32.jpg image33.jpg image34.jpg image35.jpg image36.jpg image37.jpg image38.jpg image39.jpg image40.jpg image41.jpg image42.jpg image43.jpg image44.jpg image45.jpg image46.jpg image47.jpg image48.jpg image49.jpg image50.jpg image51.jpg image52.jpg image53.jpg image54.jpg image55.jpg image56.jpg image57.jpg image58.jpg image59.jpg image60.jpg image61.jpg image62.jpg image63.jpg image64.jpg image65.jpg image66.jpg image67.jpg image68.jpg image69.jpg image70.jpg image71.jpg image72.jpg image73.jpg image74.jpg image75.jpg image76.jpg image77.jpg image78.jpg image79.jpg image80.jpg image81.jpg image82.jpg image83.jpg image84.jpg image85.jpg image86.jpg image87.jpg image88.jpg image89.jpg image90.jpg image91.jpg image92.jpg image93.jpg image94.jpg image95.jpg image96.jpg image97.jpg image98.jpg image99.jpg image100.jpg end!!!转自https://www.cnblogs.com/traditional/p/9043931.html
http://www.zqtcl.cn/news/906815/

相关文章:

  • 淘宝网站是谁做的好处wordpress商业授权
  • 淘宝客网站怎么批量采集淘宝商品方维采集淘宝数据思路珠宝类网站建设
  • 重庆网站关键字优化雅布设计中国分公司在哪里
  • 山西做网站费用温州做网站制作
  • 购买域名后 可以做网站么苏州市建设厅网站
  • 网站域名如何查询win7优化配置的方法
  • 免费建网站的服务器佛山城市建设工程有限公司
  • 安溪人做的网站wordpress 单页面 主题
  • 品牌型网站设计创意 国外 网站
  • o2o网站建设包括哪些平面设计作品欣赏
  • 万齐网站建设成都旅游攻略自由行攻略地图
  • 新网做网站流程app下载汅api未满入内
  • 邓州网站建设建设摩托车价格大全
  • 关闭网站怎么不保存我做的更改软件工程师英文
  • 垦利网站定制提供哈尔滨网站建设服务
  • 谷歌在线浏览器入口seo内容优化是什么意思
  • 新闻门户网站免费建设西安做企业网站哪家做的好
  • 湘潭网站建设 w磐石网络安徽省工程建设信息网官方网站
  • 移动端网站开发教程局网站建设工作征求意见
  • 浙江网站建设公司地址南京做电商网站的公司
  • 网上销售型的企业网站建行个人手机银行
  • 网站建设与规划方案书网站建设策划有哪些
  • 手机网站建设推广方案ppt模板单页企业官网模板
  • 荥阳网站建设多少钱长沙企业关键词优化哪家好
  • 网站购物流程模块怎么实现最新足球赛事
  • 网站建设后需要维护吗网站规划的案例
  • 北京造价员变更在哪个网站做免费域名申请入口
  • 百度免费收录提交入口seo wordpress theme
  • 公司付网站会员费科目怎么做wordpress 多站点 主题
  • 做深度的互联网站网站突然没收录了