当前位置: 首页 > news >正文

医疗类网站备案dw网页设计期末作业源代码

医疗类网站备案,dw网页设计期末作业源代码,可以免费看正能量的软件,网站透明flash先说说BatchGD用整个训练样本进行训练得出损失值#xff0c;SGD是只用一个训练样本训练就得出损失值#xff0c;GD导致训练慢#xff0c;SGD导致收敛到最小值不平滑#xff0c;故引入Mini-batch GD#xff0c;选取部分样本进行训练得出损失值#xff0c; 普通梯度下降算…先说说BatchGD用整个训练样本进行训练得出损失值SGD是只用一个训练样本训练就得出损失值GD导致训练慢SGD导致收敛到最小值不平滑故引入Mini-batch GD选取部分样本进行训练得出损失值 普通梯度下降算法如下 一般梯度下降算法def update_parameters_gd(parameters,grads,learning_rate):Llen(parameters)//2for i in range(L):parameters[Wstr(i1)]parameters[Wstr(i1)]-learning_rate*grads[dWstr(i1)]parameters[b str(i 1)] parameters[b str(i 1)] - learning_rate * grads[db str(i 1)]return parameters Momentum代码 Momentum初始化参数def initialize_Momentum_paremeters(parameters):Llen(parameters)//2v{}for i in range(L):v[dWstr(i1)]np.zeros(parameters[Wstr(i1)].shape)v[db str(i 1)] np.zeros(parameters[b str(i 1)].shape)return vMomentum更新权重def upate_parameters_Momentum(parameters,grads,v,beta,learning_rate):Llen(parameters)//2for i in range(L):v[dW str(i 1)]beta*v[dWstr(i1)](1-beta)*grads[dWstr(i1)]v[db str(i 1)] beta * v[db str(i 1)] (1 - beta) * grads[db str(i 1)]parameters[Wstr(i1)]parameters[Wstr(i1)]-learning_rate*v[dW str(i 1)]parameters[b str(i 1)] parameters[b str(i 1)] - learning_rate * v[db str(i 1)]return parameters,v Adam代码 Adam初始化参数def initialize_Adam_parameters(parameters):Llen(parameters)//2v{}s{}for i in range(L):v[dW str(i 1)] np.zeros(parameters[Wstr(i1)].shape)v[db str(i 1)] np.zeros(parameters[b str(i 1)].shape)s[dW str(i 1)] np.zeros(parameters[W str(i 1)].shape)s[db str(i 1)] np.zeros(parameters[b str(i 1)].shape)return v,sAdam更新权重def update_parameters_Adam(parameters,grads,v,s,t,beta1,beta2,learning_rate,epsilon):L len(parameters) // 2v_correct{}s_correct {}for i in range(L):v[dW str(i 1)] beta1 * v[dW str(i 1)] (1 - beta1) * grads[dW str(i 1)]v[db str(i 1)] beta1 * v[db str(i 1)] (1 - beta1) * grads[db str(i 1)]v_correct[dW str(i 1)]v[dW str(i 1)]/(1-beta1**t)v_correct[db str(i 1)] v[db str(i 1)] / (1 - beta1 ** t)s[dW str(i 1)] beta2 * s[dW str(i 1)] (1 - beta2) * np.square(grads[dW str(i 1)])s[db str(i 1)] beta2 * s[db str(i 1)] (1 - beta2) * np.square(grads[db str(i 1)])s_correct[dW str(i 1)] s[dW str(i 1)] / (1 - beta2 ** t)s_correct[db str(i 1)] s[db str(i 1)] / (1 - beta2 ** t)parameters[W str(i 1)] parameters[W str(i 1)] - \learning_rate * (v_correct[dW str(i 1)]/(np.sqrt(s[dW str(i 1)])epsilon))parameters[b str(i 1)] parameters[b str(i 1)] - \learning_rate * (v_correct[db str(i 1)]/(np.sqrt(s[db str(i 1)])epsilon))return parameters, v,s 数据集 放在opt_utils.py   代码如下还包含激活函数 前向传播 后向传播等函数 import numpy as np import matplotlib.pyplot as plt import h5py import scipy.io import sklearn import sklearn.datasetsdef sigmoid(x):Compute the sigmoid of xArguments:x -- A scalar or numpy array of any size.Return:s -- sigmoid(x)s 1/(1np.exp(-x))return sdef relu(x):Compute the relu of xArguments:x -- A scalar or numpy array of any size.Return:s -- relu(x)s np.maximum(0,x)return sdef load_params_and_grads(seed1):np.random.seed(seed)W1 np.random.randn(2,3)b1 np.random.randn(2,1)W2 np.random.randn(3,3)b2 np.random.randn(3,1)dW1 np.random.randn(2,3)db1 np.random.randn(2,1)dW2 np.random.randn(3,3)db2 np.random.randn(3,1)return W1, b1, W2, b2, dW1, db1, dW2, db2def initialize_parameters(layer_dims):Arguments:layer_dims -- python array (list) containing the dimensions of each layer in our networkReturns:parameters -- python dictionary containing your parameters W1, b1, ..., WL, bL:W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])b1 -- bias vector of shape (layer_dims[l], 1)Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])bl -- bias vector of shape (1, layer_dims[l])Tips:- For example: the layer_dims for the Planar Data classification model would have been [2,2,1]. This means W1s shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!- In the for loop, use parameters[W str(l)] to access Wl, where l is the iterative integer.np.random.seed(3)parameters {}L len(layer_dims) # number of layers in the networkfor l in range(1, L):parameters[W str(l)] np.random.randn(layer_dims[l], layer_dims[l-1])* np.sqrt(2 / layer_dims[l-1])parameters[b str(l)] np.zeros((layer_dims[l], 1))assert(parameters[W str(l)].shape layer_dims[l], layer_dims[l-1])assert(parameters[W str(l)].shape layer_dims[l], 1)return parametersdef compute_cost(a3, Y):Implement the cost functionArguments:a3 -- post-activation, output of forward propagationY -- true labels vector, same shape as a3Returns:cost - value of the cost functionm Y.shape[1]logprobs np.multiply(-np.log(a3),Y) np.multiply(-np.log(1 - a3), 1 - Y)cost 1./m * np.sum(logprobs)return costdef forward_propagation(X, parameters):Implements the forward propagation (and computes the loss) presented in Figure 2.Arguments:X -- input dataset, of shape (input size, number of examples)parameters -- python dictionary containing your parameters W1, b1, W2, b2, W3, b3:W1 -- weight matrix of shape ()b1 -- bias vector of shape ()W2 -- weight matrix of shape ()b2 -- bias vector of shape ()W3 -- weight matrix of shape ()b3 -- bias vector of shape ()Returns:loss -- the loss function (vanilla logistic loss)# retrieve parametersW1 parameters[W1]b1 parameters[b1]W2 parameters[W2]b2 parameters[b2]W3 parameters[W3]b3 parameters[b3]# LINEAR - RELU - LINEAR - RELU - LINEAR - SIGMOIDz1 np.dot(W1, X) b1a1 relu(z1)z2 np.dot(W2, a1) b2a2 relu(z2)z3 np.dot(W3, a2) b3a3 sigmoid(z3)cache (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)return a3, cachedef backward_propagation(X, Y, cache):Implement the backward propagation presented in figure 2.Arguments:X -- input dataset, of shape (input size, number of examples)Y -- true label vector (containing 0 if cat, 1 if non-cat)cache -- cache output from forward_propagation()Returns:gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variablesm X.shape[1](z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) cachedz3 1./m * (a3 - Y)dW3 np.dot(dz3, a2.T)db3 np.sum(dz3, axis1, keepdims True)da2 np.dot(W3.T, dz3)dz2 np.multiply(da2, np.int64(a2 0))dW2 np.dot(dz2, a1.T)db2 np.sum(dz2, axis1, keepdims True)da1 np.dot(W2.T, dz2)dz1 np.multiply(da1, np.int64(a1 0))dW1 np.dot(dz1, X.T)db1 np.sum(dz1, axis1, keepdims True)gradients {dz3: dz3, dW3: dW3, db3: db3,da2: da2, dz2: dz2, dW2: dW2, db2: db2,da1: da1, dz1: dz1, dW1: dW1, db1: db1}return gradientsdef predict(X, y, parameters):This function is used to predict the results of a n-layer neural network.Arguments:X -- data set of examples you would like to labelparameters -- parameters of the trained modelReturns:p -- predictions for the given dataset Xm X.shape[1]p np.zeros((1,m), dtype np.int)# Forward propagationa3, caches forward_propagation(X, parameters)# convert probas to 0/1 predictionsfor i in range(0, a3.shape[1]):if a3[0,i] 0.5:p[0,i] 1else:p[0,i] 0# print results#print (predictions: str(p[0,:]))#print (true labels: str(y[0,:]))print(Accuracy: str(np.mean((p[0,:] y[0,:]))))return pdef load_2D_dataset():data scipy.io.loadmat(datasets/data.mat)train_X data[X].Ttrain_Y data[y].Ttest_X data[Xval].Ttest_Y data[yval].Tplt.scatter(train_X[0, :], train_X[1, :], ctrain_Y, s40, cmapplt.cm.Spectral);return train_X, train_Y, test_X, test_Ydef plot_decision_boundary(model, X, y):# Set min and max values and give it some paddingx_min, x_max X[0, :].min() - 1, X[0, :].max() 1y_min, y_max X[1, :].min() - 1, X[1, :].max() 1h 0.01# Generate a grid of points with distance h between themxx, yy np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))# Predict the function value for the whole gridZ model(np.c_[xx.ravel(), yy.ravel()])Z Z.reshape(xx.shape)# Plot the contour and training examplesplt.contourf(xx, yy, Z, cmapplt.cm.Spectral)plt.ylabel(x2)plt.xlabel(x1)plt.scatter(X[0, :], X[1, :], cy, cmapplt.cm.Spectral)plt.show()def predict_dec(parameters, X):Used for plotting decision boundary.Arguments:parameters -- python dictionary containing your parameters X -- input data of size (m, K)Returnspredictions -- vector of predictions of our model (red: 0 / blue: 1)# Predict using forward propagation and a classification threshold of 0.5a3, cache forward_propagation(X, parameters)predictions (a3 0.5)return predictionsdef load_dataset():np.random.seed(3)#(300,2) (300,)train_X, train_Y sklearn.datasets.make_moons(n_samples300, noise.2) #300 #0.2 #print(train_X,train_Y)# Visualize the data#plt.scatter(train_X[:, 0], train_X[:, 1], ctrain_Y, s40, cmapplt.cm.Spectral);train_X train_X.Ttrain_Y train_Y.reshape((1, train_Y.shape[0]))return train_X, train_Y 打印数据集看看 全部代码 import numpy as np import sklearn import matplotlib.pyplot as plt import sklearn import sklearn.datasets import scipy.io import math import opt_utils import testCases1一般梯度下降算法def update_parameters_gd(parameters,grads,learning_rate):Llen(parameters)//2for i in range(L):parameters[Wstr(i1)]parameters[Wstr(i1)]-learning_rate*grads[dWstr(i1)]parameters[b str(i 1)] parameters[b str(i 1)] - learning_rate * grads[db str(i 1)]return parameters制作样本 mini-batchdef random_mini_batches(X,Y,mini_batch_size):mX.shape[1]###3mini_batchs[]permutation list(np.random.permutation(m))#[2,1,0]shuffled_X X[:,permutation]##X[:,[2,1,0]] 洗牌shuffled_Y Y[:, permutation] ##X[:,[2,1,0]]num_mini_batchmath.floor(m/mini_batch_size)for i in range(num_mini_batch):mini_batch_Xshuffled_X[:,i*mini_batch_size:(i1)*mini_batch_size]mini_batch_Yshuffled_Y[:,i*mini_batch_size:(i1)*mini_batch_size]mini_batch(mini_batch_X,mini_batch_Y)mini_batchs.append(mini_batch)if m/mini_batch_size!0:mini_batch_X shuffled_X[:, (i 1) * mini_batch_size:]mini_batch_Y shuffled_Y[:, (i 1) * mini_batch_size:]mini_batch (mini_batch_X, mini_batch_Y)mini_batchs.append(mini_batch)return mini_batchsMomentum初始化参数def initialize_Momentum_paremeters(parameters):Llen(parameters)//2v{}for i in range(L):v[dWstr(i1)]np.zeros(parameters[Wstr(i1)].shape)v[db str(i 1)] np.zeros(parameters[b str(i 1)].shape)return vMomentum更新权重def upate_parameters_Momentum(parameters,grads,v,beta,learning_rate):Llen(parameters)//2for i in range(L):v[dW str(i 1)]beta*v[dWstr(i1)](1-beta)*grads[dWstr(i1)]v[db str(i 1)] beta * v[db str(i 1)] (1 - beta) * grads[db str(i 1)]parameters[Wstr(i1)]parameters[Wstr(i1)]-learning_rate*v[dW str(i 1)]parameters[b str(i 1)] parameters[b str(i 1)] - learning_rate * v[db str(i 1)]return parameters,vAdam初始化参数def initialize_Adam_parameters(parameters):Llen(parameters)//2v{}s{}for i in range(L):v[dW str(i 1)] np.zeros(parameters[Wstr(i1)].shape)v[db str(i 1)] np.zeros(parameters[b str(i 1)].shape)s[dW str(i 1)] np.zeros(parameters[W str(i 1)].shape)s[db str(i 1)] np.zeros(parameters[b str(i 1)].shape)return v,sAdam更新权重def update_parameters_Adam(parameters,grads,v,s,t,beta1,beta2,learning_rate,epsilon):L len(parameters) // 2v_correct{}s_correct {}for i in range(L):v[dW str(i 1)] beta1 * v[dW str(i 1)] (1 - beta1) * grads[dW str(i 1)]v[db str(i 1)] beta1 * v[db str(i 1)] (1 - beta1) * grads[db str(i 1)]v_correct[dW str(i 1)]v[dW str(i 1)]/(1-beta1**t)v_correct[db str(i 1)] v[db str(i 1)] / (1 - beta1 ** t)s[dW str(i 1)] beta2 * s[dW str(i 1)] (1 - beta2) * np.square(grads[dW str(i 1)])s[db str(i 1)] beta2 * s[db str(i 1)] (1 - beta2) * np.square(grads[db str(i 1)])s_correct[dW str(i 1)] s[dW str(i 1)] / (1 - beta2 ** t)s_correct[db str(i 1)] s[db str(i 1)] / (1 - beta2 ** t)parameters[W str(i 1)] parameters[W str(i 1)] - \learning_rate * (v_correct[dW str(i 1)]/(np.sqrt(s[dW str(i 1)])epsilon))parameters[b str(i 1)] parameters[b str(i 1)] - \learning_rate * (v_correct[db str(i 1)]/(np.sqrt(s[db str(i 1)])epsilon))return parameters, v,s def model(X,Y,layer_dims,optimizer,learning_rate,mini_batch_size,beta,beta1,beta2,epsilon,num_pochs):t0costs[]parametersopt_utils.initialize_parameters(layer_dims)if optimizergd:passelif optimizerMomentum:vinitialize_Momentum_paremeters(parameters)elif optimizerAdam:v, sinitialize_Adam_parameters(parameters)for i in range(num_pochs):mini_batchsrandom_mini_batches(X,Y,mini_batch_size) ###[([X],[Y]),([X2],[Y2])]for minibatch in mini_batchs:(minibatch_X,minibatch_Y)minibatchA3, cacheopt_utils.forward_propagation(minibatch_X,parameters)costopt_utils.compute_cost(A3,minibatch_Y)gradientsopt_utils.backward_propagation(minibatch_X, minibatch_Y, cache)if optimizergd:parametersupdate_parameters_gd(parameters,gradients,learning_rate)elif optimizerMomentum:parameters, vupate_parameters_Momentum(parameters, gradients, v, beta, learning_rate)elif optimizerAdam:tt1parameters, v, supdate_parameters_Adam(parameters, gradients, v, s, t, beta1, beta2, learning_rate, epsilon)if i%10000:costs.append(cost)print(after {} epochs cost{}.format(i,cost) )plt.plot(costs)plt.xlabel(num_pochs(per 100))plt.ylabel(costs)plt.title(learning_rate{}.format(learning_rate))plt.savefig(Adam.jpg)plt.show()return parameters def test(): ############test mini_batch# X, Y, mini_batch_sizetestCases1.random_mini_batches_test_case()# mini_batchsrandom_mini_batches(X, Y, mini_batch_size64)# print(first x shape{}.format(mini_batchs[0][0].shape))# print(second x shape{}.format(mini_batchs[1][0].shape))# print(third x shape{}.format(mini_batchs[2][0].shape))# print(first y shape{}.format(mini_batchs[0][1].shape))# print(second y shape{}.format(mini_batchs[1][1].shape))# print(third y shape{}.format(mini_batchs[2][1].shape)) ############### #######test initialize_vecolity# parameterstestCases1.initialize_velocity_test_case()# vinitialize_velocity(parameters)# print(v) #################### #######test upate_parameters_Momentum# parameters, grads, vtestCases1.update_parameters_with_momentum_test_case()# parameters, vupate_parameters_Momentum(parameters,grads,v,beta0.9,learning_rate0.01)# print(parameters)# print(v) ############### ########test upate_parameters_Adamparameters, grads, v, stestCases1.update_parameters_with_adam_test_case()parameters, v, supdate_parameters_Adam(parameters,grads,v,s,t2,beta10.9,beta20.999,learning_rate0.01,epsilon1e-8)print(parameters,v,s) def test_model():train_X, train_Yopt_utils.load_dataset()layer_dims[train_X.shape[0],5,2,1]parametersmodel(train_X,train_Y,layer_dims,optimizergd,learning_rate0.0007,mini_batch_size64,beta0.9,beta10.9,beta20.999,epsilon1e-8,num_pochs10000)opt_utils.predict(train_X, train_Y, parameters) if __name____main__:#test()test_model() 更改model()里的optimizer即可普通梯度下降法结果 Momentum下降结果和上面结果差不多可能是学习率太小数据集太简单导致的吧 Adam下降结果能够更快的收敛
http://www.zqtcl.cn/news/459365/

相关文章:

  • 网站建设开发合同别具光芒 Flash互动网站设计
  • app导航网站建设多少钱网页游戏破解版
  • 布吉做棋牌网站建设哪家服务好青海做高端网站建设的公司
  • 邙山郑州网站建设好看手机网站推荐
  • 北京建设网官方网站外贸wordpress收款插件
  • 网站关键词进前三响应式手机网站模版
  • 网站采集来源制作好网站
  • 哪个网站有工笔教程免费物流公司网站模板
  • 网站怎么做才有收录西安建设工程信息网人员查询
  • 用dedecms做的网站电子商务公司名称大全简单大气
  • 网站建设的业务员wordpress font awesome
  • 艺术公司网站定制中心怎么搜索网站搜索量
  • 陕西网站建设设计公司西部数码网站管理助手破解版
  • 网站建设框架构建正规的app网站开发
  • 离退休工作网站建设方案wordpress在线浏览pdf
  • 昆明免费网站制作wordpress自定义路由
  • html5视频网站开发江西响应式网站制作
  • 网站照片加水印家装公司十大口碑排名
  • 做网站还有用PHP网站开发如何建立vip
  • 东莞广告公司东莞网站建设辽宁城乡建设部网站
  • 公司网站开发详细流程php网站开发优点
  • 广东网站建设多少钱比较大气的网站
  • asp.net怎么做登录网站网站建设服务网络服务
  • 网站备案级别做公司网站要多少钱
  • 湛江网站seo网站定制排名
  • 为什么网站之有首页被收录企业网站发布图片文章
  • 做网站要准备内蒙做网站
  • 邯郸市搞网站服务务的吗网站建设怎么在图片上加字
  • 卡片风格网站我想做跑腿网站怎么做
  • 公司网站建设前期情况说明如何找厂家地址