当前位置: 首页 > news >正文

临西做网站报价wordpress插件没有设置

临西做网站报价,wordpress插件没有设置,学生网站建设总结报告,淘宝网怎样做网站什么是目标检测目标检测关注图像中特定的物体目标#xff0c;需要同时解决解决定位(localization) 识别(Recognition)。相比分类#xff0c;检测给出的是对图片前景和背景的理解#xff0c;我们需要从背景中分离出感兴趣的目标#xff0c;并确定这一目标的描述(类别和位置…什么是目标检测目标检测关注图像中特定的物体目标需要同时解决解决定位(localization) 识别(Recognition)。相比分类检测给出的是对图片前景和背景的理解我们需要从背景中分离出感兴趣的目标并确定这一目标的描述(类别和位置)因此检测模型的输出是一个列表列表的每一项使用一个数组给出检出目标的类别和位置(常用矩形检测框的坐标表示)。通俗的说Object Detection的目的是在目标图中将目标用一个框框出来并且识别出这个框中的是啥而且最好的话是能够将图片的所有物体都框出来。目标检测算法目前目标检测领域的深度学习方法主要分为两类两阶段(Two Stages)的目标检测算法一阶段(One Stage)目标检测算法。Two Stages首先由算法(algorithm)生成一系列作为样本的候选框再通过卷积神经网络进行样本(Sample)分类。也称为基于候选区域(Region Proposal)的算法。常见的算法有R-CNN、Fast R-CNN、Faster R-CNN等等。One Stage不需要产生候选框直接将目标框定位的问题转化为回归(Regression)问题处理也称为基于端到端(End-to-End)的算法。常见的算法有YOLO、SSD等等。python实现本文主要讲述如何实现目标检测至于背后的原理不过多赘述可以去看相关的论文。ImageAI是一个简单易用的计算机视觉Python库使得开发者可以轻松的将最新的最先进的人工智能功能整合进他们的应用。ImageAI本着简洁的原则支持最先进的机器学习算法用于图像预测自定义图像预测物体检测视频检测视频对象跟踪和图像预测训练。依赖Python 3.5.1(及更高版本)pip3Tensorflow 1.4.0(及更高版本)Numpy 1.13.1(及更高版本)SciPy 0.19.1(及更高版本)OpenCVpillowMatplotlibh5pyKeras 2.x安装命令行安装pip3 install https://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.1/imageai-2.0.1-py3-none-any.whlpip3 install .\imageai-2.1.0-py3-none-any.whl使用Image支持的深度学习的算法有RetinaNet,YOLOv3,TinyYoLOv3。ImageAI已经在COCO数据集上预先训练好了对应的三个模型根据需要可以选择不同的模型。可以通过下面的链接进行下载使用以上模型可以检测并识别以下80种不同的目标person, bicycle, car, motorcycle, airplane,bus, train, truck, boat, traffic light, fire hydrant, stop_sign,parking meter, bench, bird, cat, dog, horse, sheep, cow,elephant, bear, zebra, giraffe, backpack, umbrella,handbag, tie, suitcase, frisbee, skis, snowboard,sports ball, kite, baseball bat, baseball glove, skateboard,surfboard, tennis racket, bottle, wine glass, cup, fork, knife,spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot,hot dog, pizza, donot, cake, chair, couch, potted plant, bed,dining table, toilet, tv, laptop, mouse, remote, keyboard,cell phone, microwave, oven, toaster, sink, refrigerator,book, clock, vase, scissors, teddy bear, hair dryer,toothbrush先来看看完整的代码使用YOLOv3算法对13张照片进行目标识别。from imageai.Detection import ObjectDetectionimport osdetector ObjectDetection()detector.setModelTypeAsYOLOv3()detector.setModelPath(./model/yolo.h5)detector.loadModel()path os.getcwd()input_image_list os.listdir(path\pic\input)input_image_list sorted(input_image_list, key lambda i:len(i),reverse False)size len(input_image_list)for i in range(size):input_image_path os.path.join(path\pic\input, input_image_list[i])output_image_path os.path.join(path\pic\output, input_image_list[i])detections, extract_detected_objects detector.detectObjectsFromImage(input_imageinput_image_path,output_image_pathoutput_image_path,extract_detected_objectsTrue)print(------------------- %d ------------------- % int(i 1))for eachObject in detections:print(eachObject[name], : , eachObject[percentage_probability], : , eachObject[box_points])print(------------------- %d ------------------- % int(i 1))首先第一行导入ImageAI Object Detection类在第二行导入os库。然后创建了ObjectDetection类的新实例接着就可以选择要使用的算法。分别有以下三个函数.setModelTypeAsRetinaNet().setModelTypeAsYOLOv3().setModelTypeAsTinyYOLOv3()选择好算法之后就要设置模型文件路径这里给出的路径必须要和选择的算法一样。.setModelPath()- 参数path(必须)模型文件的路径载入模型。.loadModel()- 参数detection_speed(可选)最多可以减少80%的时间但是会导致精确度的下降。可选的值有 “normal”, “fast”, “faster”, “fastest” 和 “flash”。默认值是 “normal”。通过os库的函数得到输入输出文件的路径等这不是本文重点跳过不表。开始对图像进行目标检测。.detectObjectsFromImage()- 参数input_image(必须)待检测图像的路径- 参数output_image(必须)输出图像的路径- 参数parameter minimum_percentage_probability(可选)能接受的最低预测概率。默认值是50%。- 参数display_percentage_probability(可选)是否展示预测的概率。默认值是True。- 参数display_object_name(可选)是否展示识别物品的名称。默认值是True。- 参数extract_detected_objects(可选)是否将识别出的物品图片保存。默认是False。返回值根据不同的参数也有不同但都会返回一个an array of dictionaries。字典包括以下几个属性* name (string)* percentage_probability (float)* box_points (tuple of x1,y1,x2 and y2 coordinates)前面说过可以识别80种目标在这里也可以选择只识别自己想要的目标。custom detector.CustomObjects(personTrue, dogTrue)detections detector.detectCustomObjectsFromImage( custom_objectscustom, input_imageos.path.join(execution_path , image3.jpg), output_image_pathos.path.join(execution_path , image3new-custom.jpg), minimum_percentage_probability30)首先用定义自己想要的目标其余的目标会被设置为False。然后配合.detectCustomObjectsFromImage()进行目标检测。主要的代码基本如上所述接下来看结果。先看看图片中只有一个目标的效果。------------------- 10 -------------------dog : 98.83476495742798 : (117, 91, 311, 360)dog : 99.24255609512329 : (503, 133, 638, 364)dog : 99.274742603302 : (338, 38, 487, 379)------------------- 10 -------------------效果还是不错的。再看看如果图片中有多个目标识别的结果如何。------------------- 4 -------------------book : 55.76887130737305 : (455, 74, 487, 146)book : 82.22097754478455 : (466, 11, 482, 69)tv : 99.34800863265991 : (25, 40, 182, 161)bed : 88.7190580368042 : (60, 264, 500, 352)cat : 99.54025745391846 : (214, 125, 433, 332)------------------- 4 -------------------识别度还是很高的背后人眼都看不清的书本都能被识别。附录
http://www.zqtcl.cn/news/321605/

相关文章:

  • 手机网站大全网站收费网站推广
  • 华企立方做网站自己动手做导航网站
  • 如何建设教师网上授课网站重庆建设网站哪家专业
  • 企业网站页头背景图建设三轮摩托车官网
  • 直播网站创做上海idc机房托管
  • 受欢迎自适应网站建设地址c2c二手车交易平台
  • 做个平台网站怎么做房价查询
  • 自学网站建设最快要多久asp.net 手机网站开发
  • 淮安做网站找哪家公司verycloud wordpress
  • 无法连接到wordpress站点网站建设的 几点
  • 网站免费空间购买wordpress支持页面模版
  • 腾讯建设网站视频宁波城乡住房建设厅网站
  • 乐清网站开发公司个人网站建设工作室
  • 网站空间升级通知手机端怎么看世界杯
  • 广西南宁网站推广建设网站视频教程
  • 福州专业网站建设推广费用nas可做网站服务器吗
  • 齐鲁建设网站福建省高速公路建设管理网站
  • 比格设计网站官网收录网站查询
  • 国外做直播网站淘宝电商网站怎么做的
  • 国外私人网站网站由那些组成
  • 网站备案多久通过机械设备网站
  • 企业自建站案例网站基础知识域名5个点
  • 咸宁建设网站海口市网站建设
  • 认识电子商务网站建设技术网站交换链接怎么做?
  • 定制商城网站建设全球搜索引擎排名2021
  • 徐州百度网站快速优化做网站视频图片加载不出来
  • 网站被host重定向处理浙江网新股吧
  • asp国外网站什么页游好玩
  • 高端简约30平米办公室装修广州搜索seo网站优化
  • 海口的网站建设公司wordpress二次元极简主题