企业品牌网站建设我们的优势,网站建设客户管理系统,做电影网站,哪个网站的邮箱最好数据结构与算法作用
没有看过数据结构和算法#xff0c;有时面对问题可能会没有任何思路#xff0c;不知如何下手去解决#xff1b;大部分时间可能解决了问题#xff0c;可是对程序运行的效率和开销没有意识#xff0c;性能低下#xff1b;有时会借助别人开发的利器暂时…数据结构与算法作用
没有看过数据结构和算法有时面对问题可能会没有任何思路不知如何下手去解决大部分时间可能解决了问题可是对程序运行的效率和开销没有意识性能低下有时会借助别人开发的利器暂时解决了问题可是遇到性能瓶颈的时候又不知该如何进行针对性的优化。
计算机界著名公式由瑞士计算机科学家尼克劳斯·威茨Niklaus Wirth提出也因此获得图灵奖。 程序 数据结构 算法 算法的提出
算法的概念 算法是计算机处理信息的本质因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地当算法在处理信息时会从输入设备或数据的存储地址读取数据把结果写入输出设备或某个存储地址供以后再调用。
算法是独立存在的一种解决问题的方法和思想。
对于算法而言实现的语言并不重要重要的是思想。
算法可以有不同的语言描述实现版本如C描述、C描述、Python描述等我们现在是在用Python语言进行描述实现。
算法的五大特性
输入 : 算法具有0个或多个输入输出 : 算法至少有1个或多个输出有穷性 : 算法在有限的步骤之后会自动结束而不会无限循环并且每一个步骤可以在可接受的时间内完成确定性 算法中的每一步都有确定的含义不会出现二义性可行性 算法的每一步都是可行的也就是说每一步都能够执行有限的次数完成 算法效率衡量 执行时间反应算法效率 对于同一问题我们给出了两种解决算法在两种算法的实现中我们对程序执行的时间进行了测算发现两段程序执行的时间相差悬殊214.583347秒相比于0.182897秒由此我们可以得出结论实现算法程序的执行时间可以反应出算法的效率即算法的优劣。 单靠时间值绝对可信吗 假设我们将第二次尝试的算法程序运行在一台配置古老性能低下的计算机中情况会如何很可能运行的时间并不会比在我们的电脑中运行算法一的214.583347秒快多少。 单纯依靠运行的时间来比较算法的优劣并不一定是客观准确的 程序的运行离不开计算机环境包括硬件和操作系统这些客观原因会影响程序运行的速度并反应在程序的执行时间上。那么如何才能客观的评判一个算法的优劣呢 时间频度 一个算法执行所耗费的时间从理论上是不能算出来的必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试只需知道哪个算法花费的时间多哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例哪个算法中语句执行次数多它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 时间复杂度与“大O记法” 上面提到的时间频度T(n)中n称为问题的规模当n不断变化时时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律为此我们引入时间复杂度的概念。一般情况下算法中基本操作重复执行的次数是问题规模n的某个函数用T(n)表示如果存在一个整数函数g和实常数c0使得对于充分大的n总有T(n)c*g(n)就说函数g是T(n)函数的一个渐近函数忽略常数记为T(n)O(g(n))它称为算法的渐进时间复杂度简称时间复杂度。这种用O( )来体现算法时间复杂度的记法我们称之为大O表示法。 大O表示法实际就是去掉T(n)函数的最高阶项系数、低阶项和常数项只保留最高阶项。如T(n)函数为5n3 3n 5使用大O表示法则时间复杂度为O(n3)。 如何理解“大O记法” 对于算法的效率衡量最重要的是其数量级和趋势这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如可以认为3n2和100n2属于同一个量级如果两个算法处理同样规模实例的代价分别为这两个函数就认为它们的效率“差不多”都为n2级。 最坏时间复杂度 分析算法时存在几种可能的考虑 算法完成工作最少需要多少基本操作即最优时间复杂度算法完成工作最多需要多少基本操作即最坏时间复杂度算法完成工作平均需要多少基本操作即平均时间复杂度 对于最优时间复杂度其价值不大因为它没有提供什么有用信息其反映的只是最乐观最理想的情况没有参考价值。 对于最坏时间复杂度提供了一种保证表明算法在此种程度的基本操作中一定能完成工作。 对于平均时间复杂度是对算法的一个全面评价因此它完整全面的反映了这个算法的性质。但另一方面这种衡量并没有保证不是每个计算都能在这个基本操作内完成。而且对于平均情况的计算也会因为应用算法的实例分布可能并不均匀而难以计算。 因此我们主要关注算法的最坏情况亦即最坏时间复杂度。 时间复杂度的几条基本计算规则 基本操作即只有常数项认为其时间复杂度为O(1)顺序结构时间复杂度按加法进行计算循环结构时间复杂度按乘法进行计算分支结构时间复杂度取最大值判断一个算法的效率时往往只需要关注操作数量的最高次项其它次要项和常数项可以忽略在没有特殊说明时我们所分析的算法的时间复杂度都是指最坏时间复杂度 常见时间复杂度
执行次数函数举例阶非正式术语12O(1)常数阶2n3O(n)线性阶3n22n1O(n2)平方阶5log2n20O(logn)对数阶2n3nlog2n19O(nlogn)nlogn阶6n32n23n4O(n3)立方阶2nO(2n)指数阶
注意经常将log2n以2为底的对数简写成logn
常见时间复杂度之间的关系 所消耗的时间从小到大
O(1) O(logn) O(n) O(nlogn) O(n2) O(n3) O(2n) O(n!) O(nn) Python内置类型性能分析
timeit模块 timeit模块可以用来测试一小段Python代码的执行速度。
class timeit.Timer(stmtpass, setuppass, timertimer function)
Timer是测量小段代码执行速度的类。
stmt参数是要测试的代码语句statment
setup参数是运行代码时需要的设置
timer参数是一个定时器函数与平台有关。
timeit.Timer.timeit(number1000000)
Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数默认为1000000次。方法返回执行代码的耗时一个float类型的秒数。
list内置操作的时间复杂度 dict内置操作的时间复杂度 数据结构 我们如何用Python中的类型来保存一个班的学生信息 如果想要快速的通过学生姓名获取其信息呢 实际上当我们在思考这个问题的时候我们已经用到了数据结构。列表和字典都可以存储一个班的学生信息但是想要在列表中获取一名同学的信息时就要遍历这个列表其时间复杂度为O(n)而使用字典存储时可将学生姓名作为字典的键学生信息作为值进而查询时不需要遍历便可快速获取到学生信息其时间复杂度为O(1)。
我们为了解决问题需要将数据保存下来然后根据数据的存储方式来设计算法实现进行处理那么数据的存储方式不同就会导致需要不同的算法进行处理。我们希望算法解决问题的效率越快越好于是我们就需要考虑数据究竟如何保存的问题这就是数据结构。
在上面的问题中我们可以选择Python中的列表或字典来存储学生信息。列表和字典就是Python内建帮我们封装好的两种数据结构。
概念
数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。
为了解决问题需要将数据保存下来然后根据数据的存储方式来设计算法实现进行处理那么数据的存储方式不同就会导致需要不同的算法进行处理。我们希望算法解决问题的效率越快越好于是我们就需要考虑数据究竟如何保存的问题这就是数据结构。