当前位置: 首页 > news >正文

网站项目建设申请汇报大纲高端网站定制开发设计制作

网站项目建设申请汇报大纲,高端网站定制开发设计制作,职业生涯规划大赛项目名称,温州微网站制作公司哪家好使用TIGRAMITE 进行自助聚合和链接置信度量化 自助聚合#xff08;Bagging#xff09;和置信度估计例子数据生成模型基本的PCMCIBagged-PCMCI使用优化后的pc_alpha进行自举聚合使用优化的pc_alpha进行CMIknn的自举聚合 TIGRAMITE是一个用于时间序列分析的Python模块。它基于P… 使用TIGRAMITE 进行自助聚合和链接置信度量化 自助聚合Bagging和置信度估计例子数据生成模型基本的PCMCIBagged-PCMCI使用优化后的pc_alpha进行自举聚合使用优化的pc_alpha进行CMIknn的自举聚合 TIGRAMITE是一个用于时间序列分析的Python模块。它基于PCMCI框架允许从离散或连续值时间序列中重建因果图模型并创建结果的高质量图表。 这篇《自然-地球与环境》评论论文总结了一般时间序列因果推断的概况 本教程解释了时间序列因果发现的自助聚合Bagging该方法在PCMCIbase.run_bootstrap_of函数中实现。自助聚合是一种通用的元算法可与TIGRAMITE的大多数因果发现方法结合使用例如run_pcmci、run_pcalg_non_timeseries_data、run_pcmciplus、run_lpcmci等包括整个条件独立性检验范围。您可以参考以下预印本获取更多信息。 import numpy as npfrom matplotlib import pyplot as plt %matplotlib inline import tigramite from tigramite import data_processing as pp from tigramite.toymodels import structural_causal_processes as toys from tigramite import plotting as tp from tigramite.lpcmci import LPCMCI from tigramite.pcmci import PCMCI from tigramite.independence_tests.parcorr import ParCorr from tigramite.independence_tests.cmiknn import CMIknn from tigramite.pcmci_base import PCMCIbase自助聚合Bagging和置信度估计 在基于自助法的自助聚合bagging中训练集中的随机样本是有放回地选择的这意味着在每个自助样本中每个数据点可以被多次抽取。以这种方式生成多个数据样本以产生一组复制品也称为重新采样。机器学习模型然后分别在每个复制品上进行训练最终为预测任务对输出进行平均或为分类任务进行聚合例如通过多数投票。在我们的情况下训练集是输入时间序列机器学习模型是因果发现方法输出是因果图。 自助聚合在时间序列因果发现中的主要兴趣在于改善输出图的稳健性并为图中的连接提供置信度估计。由于时间序列因果发现对时间依赖性敏感保持重采样过程中的时间依赖性是至关重要的。然而标准重采样不可避免地会破坏至少部分地时间滞后依赖。为解决这个问题我们采用以下所示的重采样策略 最终我们的自助聚合方法结合时间序列因果发现方法这里是PCMCI可以总结如下原始时间序列被重采样 B B B 自助法复制次数次。在每个重采样中PCMCI被独立运行产生一个输出图。然后通过相对多数投票对每对边的类型进行聚合得到 B B B 个输出图。对于每个边缘的类型通过大多数投票对所有这些图进行聚合得到最终输出图解决连接冲突的优先级顺序无连接×−×和◦−◦如果→和←之间存在冲突的连接则返回冲突连接×−×。 Bagged-PCMCI的返回结果包括 通过将PCMCI应用于通过保留时间依赖性进行重采样获得的 B B B 个数据集得到的 B B B 个因果图集成 将所有这些图通过多数投票在每个单独边缘的级别聚合到最终输出图中 为最终聚合图提供连接频率以提供连接的置信度量。 通过输出图中连接的宽度来表示此置信度量时间滞后2时刻的 X 2 → X 3 X_2 \rightarrow X_3 X2​→X3​ 的置信度量与箭头宽度成比例大于时间滞后1时刻的 X 4 → X 1 X_4 \rightarrow X_1 X4​→X1​ 的置信度量。 与所选因果发现算法相比被聚合的版本有一个进一步的参数自助法复制次数 B B B 。在实践中我们建议尽可能使用较大的 B B B 。该实施使用joblib进行并行化。在我们的数值实验中 B 25 B25 B25已经获得了良好的结果但我们建议使用 B ≥ 100 B\geq 100 B≥100。 例子 这一部分演示和解释了Bagged-PCMCI在合成数据上的应用。 数据生成模型 # Set seed for reproducibility seed 1111 # Choose the time series length T 100# Specify the model (note that here, unlike in the typed equations, variables # are indexed starting from 0) def lin(x): return xlinks {0: [((0, -1), 0.3, lin), ((2, 0), 0.5, lin), ((3, -1), -0.5, lin)], # X11: [((1, -1), 0.3, lin)], # X22: [((2, -1), 0.3, lin), ((1, -2), 0.4, lin)], # X33: [((3, -1), 0.3, lin)] # X4 }var_names [r$X^{%d}$ % j for j in range(1, len(links)1)]# Show ground truth causal graph tp.plot_graph(graph PCMCI.get_graph_from_dict(links),var_namesvar_names,)现在往里面灌数据 # Generate data according to the full structural causal process data, nonstationarity_indicator toys.structural_causal_process(linkslinks, TT, seedseed) assert not nonstationarity_indicator# Number of variables N data.shape[1]# Initialize dataframe object, specify variable names dataframe pp.DataFrame(data, var_namesvar_names)基本的PCMCI 先展示以下基本的PCMCI算法 tau_max 2 pc_alpha 0.01pcmci PCMCI(dataframedataframe,cond_ind_testParCorr(),verbosity0,) results_pcmciplus pcmci.run_pcmciplus(tau_maxtau_max, pc_alphapc_alpha) tp.plot_graph(graph results_pcmciplus[graph],val_matrix results_pcmciplus[val_matrix],var_namesdataframe.var_names,); plt.show()在这里PCMCI漏了连接 X 2 → X 3 X^2\to X^3 X2→X3 并且无法确定连接 X 3 → X 1 X^3\to X^1 X3→X1 的方向。 Bagged-PCMCI 从我们的数值实验中我们发现Bagged-PCMCI改善了邻接精度和方向识别率。然而不能直接将Bagged-PCMCI与相同的pc_alpha下的PCMCI结果进行比较请参见论文中的精度-召回曲线。在这里我们选择了一个更高的pc_alpha用于Bagged-PCMCI。在下文中我们将说明如何使用模型选择来选择pc_alpha。 Bagged-PCMCI的另一个参数是自助法的块长度默认为1。可以选择性地用它来更好地处理自相关性但其效果尚未评估。 pc_alpha_bootstrap 0.1 boot_samples 200# The block-length of the bootstrap can optionally be used to better deal with autocorrelation, # but its effect was not yet evaluated. boot_blocklength 1## Create PCMCI object to call run_bootstrap_of pcmci PCMCI(dataframedataframe,cond_ind_testParCorr(),verbosity0,)# Call bootstrap for the chosen method (here run_pcmciplus) and pass method arguments results pcmci.run_bootstrap_of(methodrun_pcmciplus, method_args{tau_max:tau_max, pc_alpha:pc_alpha_bootstrap}, boot_samplesboot_samples,boot_blocklengthboot_blocklength,seed123)# Output graph, link frequencies (confidence measure), and mean test statistic values (val_mat) boot_linkfreq results[summary_results][link_frequency] boot_graph results[summary_results][most_frequent_links] val_mat results[summary_results][val_matrix_mean]# Plot tp.plot_graph(graph boot_graph,val_matrix val_mat,link_width boot_linkfreq,var_namesdataframe.var_names,); plt.show()在这个例子中我们可以看到Bagged-PCMCI获得了正确的图在 B B B个重新采样中进行链接多数投票并且还通过箭头的宽度提供了对链接的置信度的有用估计。 使用优化后的pc_alpha进行自举聚合 对于一系列算法和条件独立性测试还可以将pc_alpha设置为指定的列表或为None然后将使用列表[0.001, 0.005, 0.01, 0.025, 0.05]。pc_alpha将根据在cond_ind_test.get_model_selection_criterion()中计算的得分在指定列表中的值上进行优化。这对于所有条件独立性测试都是不可能的。 这种方法也可以与自举聚合相结合。pc_alpha会在每次 B B B个自举重新采样中进行内部和个别优化。 pc_alpha_bootstrap [0.001, 0.01, 0.05, 0.1, 0.2] # This can be adapted boot_samples 200# The block-length of the bootstrap can optionally be used to better deal with autocorrelation, # but its effect was not yet evaluated. boot_blocklength 1## Create PCMCI object to call run_bootstrap_of pcmci PCMCI(dataframedataframe,cond_ind_testParCorr(),verbosity0,)# Call bootstrap for the chosen method (here run_pcmciplus) and pass method arguments results pcmci.run_bootstrap_of(methodrun_pcmciplus, method_args{tau_max:tau_max, pc_alpha:pc_alpha_bootstrap}, boot_samplesboot_samples,boot_blocklengthboot_blocklength,seed123)# Output graph, link frequencies (confidence measure), and mean test statistic values (val_mat) boot_linkfreq results[summary_results][link_frequency] boot_graph results[summary_results][most_frequent_links] val_mat results[summary_results][val_matrix_mean]# Plot tp.plot_graph(graph boot_graph,val_matrix val_mat,link_width boot_linkfreq,var_namesdataframe.var_names,); plt.show()使用优化的pc_alpha进行CMIknn的自举聚合 最后我们展示了通过优化pc_alpha和非线性条件独立性测试CMIknn来实现Bagged-PCMCI方法。请参阅相应的教程。使用标准初始化CMIknn(significanceshuffle_test)将导致每个测试执行计算密集型的置换检验方案以获得零分布。另一种具有较少统计严谨性的替代方法是仅基于条件互信息上的固定阈值做出测试决策使用CMIknn(significancefixed_thres)请参阅教程中的解释。这在这里进行了说明。 我们按以下方式创建非线性数据 # Choose the time series length T 500# Specify the model (note that here, unlike in the typed equations, variables # are indexed starting from 0) def lin(x): return x def nonlin(x): return .2 * (x 5. * x**2 * np.exp(-x**2 / 20.))links {0: [((0, -1), 0.3, lin), ((2, 0), 0.5, lin), ((3, -1), -0.7, nonlin)], # X11: [((1, -1), 0.3, lin)], # X22: [((2, -1), 0.3, lin), ((1, -2), 0.4, nonlin)], # X33: [((3, -1), 0.3, lin)] # X4 }# Generate data according to the full structural causal process data, nonstationarity_indicator toys.structural_causal_process(linkslinks, T500, seedseed) # Initialize dataframe object, specify variable names dataframe pp.DataFrame(data, var_namesvar_names)# Use a range of fixed thresholds, these are used as pc_alpha (with a slight abuse of the parameter name) # This can be adapted, higher thresholds lead to stricter link decisions and, hence, sparser graphs fixed_thresholds [0.01, 0.025, 0.05, 0.1] boot_samples 100# The block-length of the bootstrap can optionally be used to better deal with autocorrelation, # but its effect was not yet evaluated. boot_blocklength 1## Create PCMCI object to call run_bootstrap_of pcmci PCMCI(dataframedataframe,cond_ind_testCMIknn(significancefixed_thres, model_selection_folds5),verbosity0,)# Call bootstrap for the chosen method (here run_pcmciplus) and pass method arguments results pcmci.run_bootstrap_of(methodrun_pcmciplus, method_args{tau_max:tau_max, pc_alpha:fixed_thresholds}, boot_samplesboot_samples,boot_blocklengthboot_blocklength,seed123)# Output graph, link frequencies (confidence measure), and mean test statistic values (val_mat) boot_linkfreq results[summary_results][link_frequency] boot_graph results[summary_results][most_frequent_links] val_mat results[summary_results][val_matrix_mean]# Plot tp.plot_graph(graph boot_graph,val_matrix val_mat,link_width boot_linkfreq,var_namesdataframe.var_names,vmin_edges0.,vmax_edges 0.2,edge_ticks0.05,cmap_edgesOrRd,vmin_nodes0,vmax_nodes.2,node_ticks.1,cmap_nodesOrRd,); plt.show()
http://www.zqtcl.cn/news/355303/

相关文章:

  • 动力论坛源码网站后台地址是什么网站上微信支付功能
  • 网站需求分析模板深圳3d制作
  • 宿迁网站建设推广公司wordpress忘记密码了
  • 成都双语网站开发flat wordpress
  • 大连做公司网站的公司网络营销的网站
  • 做网站 人工智能怎么做商业服务网站
  • 自助建站公司四平市住房和城乡建设部网站
  • 淄博网站seo价格世界新闻最新消息
  • 网站开发 毕业答辩pptwordpress qq邮箱订阅
  • 国家icp备案网站群辉域名登录wordpress
  • 仙居住房和城乡建设规划局网站可以做思维导图的网站
  • 企业网站建设费怎么入账石家庄定制网站建设服务
  • 遂宁建设网站如何搭建微信公众号平台
  • 咖啡网站源码公司网站手机版
  • 新能源网站开发网站做5级分销合法吗
  • 西安建设网站排名简约风网站首页怎么做
  • 安远做网站做服务网站要多少钱
  • 功能网站模板电商平台项目商业计划书
  • 阿里巴巴国际站入驻费用及条件广州做网站比较好的公司
  • 淄博营销网站建设阳泉营销型网站建设费用
  • 珠海网站开发定制常德网站建设详细策划
  • 做电影网站侵权哈尔滨网站开发
  • 中国联通网站备案系统Wordpress建立空白页面
  • 郑州网站建设 郑州网站制作wordpress删除模板
  • 北京网站设计培训wordpress vps 伪静态
  • 做网站和编程有关系吗seo百家外链网站
  • 网站新闻怎么写最新事故案例100例
  • 网站中的表格seo宣传网站
  • 河南锦路路桥建设有限公司网站网站建设会考什么
  • 高校网站建设研究意义餐饮vi设计案例