当前位置: 首页 > news >正文

公司网站管理实验报告如何做请求队列防止网站高并发

公司网站管理实验报告,如何做请求队列防止网站高并发,建设信用卡银行商城网站,ui设计需要掌握的软件原创博客:转载请标明出处:http://www.cnblogs.com/zxouxuewei/ 关键点#xff1a;是多个方向上亮度变化强的区域。 opencv:版本是2.4. 光学流函数#xff1a;calcOpticalFlowPyrLK()。#xff08;关键点侦测器使用goodFeaturesToTrack()#xff09;二者结合。 相应的启动文…原创博客:转载请标明出处:http://www.cnblogs.com/zxouxuewei/   关键点是多个方向上亮度变化强的区域。 opencv:版本是2.4. 光学流函数calcOpticalFlowPyrLK()。关键点侦测器使用goodFeaturesToTrack()二者结合。 相应的启动文件为lk_tracker.launch 首先确保你的kinect驱动或者uvc相机驱动能正常启动如果你使用的是kinect请运行openni驱动 roslaunch openni_launch openni.launch   如果你没有安装kinect深度相机驱动请看我前面的博文。 然后运行下面的launch文件 roslaunch rbx1_vision good_features.launch 当视频出现时通过鼠标画矩形将图像中的某个对象框住。这个矩形表示所选的区域你会看到这个区域中会出现一些绿色的小圆点他们是goodFeaturesToTrack()。侦测器在该区域中发现的关键点。然后试着移动你所选择的区域你会看到光学流函数calcOpticalFlowPyrLK()跟踪关键点。 以下是我的运行结果 移动后 下面让我们来看看代码主要是lk_tracker.py脚本 #!/usr/bin/env python lk_tracker.py - Version 1.1 2013-12-20Based on the OpenCV lk_track.py demo codeCreated for the Pi Robot Project: http://www.pirobot.orgCopyright (c) 2011 Patrick Goebel. All rights reserved.This program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 2 of the License, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Public License for more details at:http://www.gnu.org/licenses/gpl.htmlimport rospy import cv2 import cv2.cv as cv import numpy as np from rbx1_vision.good_features import GoodFeaturesclass LKTracker(GoodFeatures):def __init__(self, node_name):super(LKTracker, self).__init__(node_name)self.show_text rospy.get_param(~show_text, True)self.feature_size rospy.get_param(~feature_size, 1)# LK parametersself.lk_winSize rospy.get_param(~lk_winSize, (10, 10))self.lk_maxLevel rospy.get_param(~lk_maxLevel, 2)self.lk_criteria rospy.get_param(~lk_criteria, (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 20, 0.01))self.lk_params dict( winSize self.lk_winSize, maxLevel self.lk_maxLevel, criteria self.lk_criteria) self.detect_interval 1self.keypoints Noneself.detect_box Noneself.track_box Noneself.mask Noneself.grey Noneself.prev_grey Nonedef process_image(self, cv_image):try:# If we dont yet have a detection box (drawn by the user# with the mouse), keep waitingif self.detect_box is None:return cv_image# Create a greyscale version of the imageself.grey cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)# Equalize the grey histogram to minimize lighting effectsself.grey cv2.equalizeHist(self.grey)# If we havent yet started tracking, set the track box to the# detect box and extract the keypoints within itif self.track_box is None or not self.is_rect_nonzero(self.track_box):self.track_box self.detect_boxself.keypoints self.get_keypoints(self.grey, self.track_box)else:if self.prev_grey is None:self.prev_grey self.grey# Now that have keypoints, track them to the next frame# using optical flowself.track_box self.track_keypoints(self.grey, self.prev_grey)# Process any special keyboard commands for this moduleif self.keystroke ! -1:try:cc chr(self.keystroke 255).lower()if cc c:# Clear the current keypointsself.keypoints Noneself.track_box Noneself.detect_box Noneexcept:passself.prev_grey self.greyexcept:passreturn cv_image def track_keypoints(self, grey, prev_grey):# We are tracking points between the previous frame and the# current frameimg0, img1 prev_grey, grey# Reshape the current keypoints into a numpy array required# by calcOpticalFlowPyrLK()p0 np.float32([p for p in self.keypoints]).reshape(-1, 1, 2)# Calculate the optical flow from the previous frame to the current framep1, st, err cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **self.lk_params)# Do the reverse calculation: from the current frame to the previous frametry:p0r, st, err cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **self.lk_params)# Compute the distance between corresponding points in the two flowsd abs(p0-p0r).reshape(-1, 2).max(-1)# If the distance between pairs of points is 1 pixel, set# a value in the good array to True, otherwise Falsegood d 1# Initialize a list to hold new keypointsnew_keypoints list()# Cycle through all current and new keypoints and only keep# those that satisfy the good condition abovefor (x, y), good_flag in zip(p1.reshape(-1, 2), good):if not good_flag:continuenew_keypoints.append((x, y))# Draw the keypoint on the imagecv2.circle(self.marker_image, (x, y), self.feature_size, (0, 255, 0, 0), cv.CV_FILLED, 8, 0)# Set the global keypoint list to the new list self.keypoints new_keypoints# Convert the keypoints list to a numpy arraykeypoints_array np.float32([p for p in self.keypoints]).reshape(-1, 1, 2) # If we have enough points, find the best fit ellipse around themif len(self.keypoints) 6:track_box cv2.fitEllipse(keypoints_array)else:# Otherwise, find the best fitting rectangletrack_box cv2.boundingRect(keypoints_array)except:track_box Nonereturn track_boxif __name__ __main__:try:node_name lk_trackerLKTracker(node_name)rospy.spin()except KeyboardInterrupt:print Shutting down LK Tracking node.cv.DestroyAllWindows() 转载于:https://www.cnblogs.com/zxouxuewei/p/5409961.html
http://www.zqtcl.cn/news/327971/

相关文章:

  • 云南通耀建设工程有限公司网站国际购物网站平台有哪些
  • 网站建设外包服务上海网站建设公司怎么分辨好坏
  • 建筑类企业网站模板下载微信搜索推广
  • 上海网站备案在哪里wordpress短链接关键字
  • 金诚财富网站是谁做的建站技术博客
  • 黔东南网站设计公司儿童衣服刘涛做代言那个是什么网站
  • 网站首页样式百度推广是什么工作
  • 广告手机网站制作阿里云域名 设置网站
  • 杭州市拱墅区网站建设ui培训有用么
  • 广东手机网站建设多少钱邯郸市做网站的公司
  • seo网站优化推广怎么做龙岗中心医院
  • 建网站程序智能网站建设平台
  • 建筑公司分几级资质seo入门培训
  • wap类网站上海网站建设免费推
  • 网站建设哪家好公司建设银行网站怎么登陆不
  • 关于建设网站的需求wordpress不能发布文章
  • 如何一键建淘宝客网站中国建设银行金华分行网站
  • 给wordpress添加公告英语seo
  • 佛山市网站建设系统wap浏览器网页版
  • 关于小说网站的一些建设流程学做蛋糕有哪些网站
  • 益阳购物网站开发设计禹城网站制作
  • 教育网站开发文档全网营销推广案例
  • 最流行的网站开发框架wordpress阅读权限
  • 怎么做推广网站创立网站
  • 制作自己的网站需要什么材料网站计费系统怎么做
  • 网站和域名的区别昆山网站开发建设公司
  • 兼职网站推广如何做西安市商标局
  • 打开网站说建设中是什么问题莱芜金点子招小时工
  • 做网站的相关协议秦皇岛解封最新消息今天
  • 网站托管维护方案新闻媒体发稿平台