当前位置: 首页 > news >正文

wordpress 后台图片北京网站优化排名

wordpress 后台图片,北京网站优化排名,北京seo关键词排名,连锁销售平台2024 年伊始#xff0c;Kyligence 联合创始人兼 CEO 韩卿在公司内部的飞书订阅号发表了多篇 Rethink Data Analytics 的内部信#xff0c;分享了对数据与分析行业的一些战略思考#xff0c;尤其是 AI 带来的各种变化和革命#xff0c;是如何深刻地影响这个行业乃至整…2024 年伊始Kyligence 联合创始人兼 CEO 韩卿在公司内部的飞书订阅号发表了多篇 Rethink Data Analytics 的内部信分享了对数据与分析行业的一些战略思考尤其是 AI 带来的各种变化和革命是如何深刻地影响这个行业乃至整个企业运营与管理。 上周我们发布了第一篇关于技术趋势的解读点击查看这次我们将聊聊对中美不同市场的认知是对过去几年我们在中美不同市场间实践的回顾和复盘随着全球经济的变化和 AI 带来的新机会下一步出海的新策略也将和以前大不一样内容有所删减期待大家在评论区分享自己的见解和体会 Kyligence 在海外收获了不少大客户包括美国、中东和欧洲的客户但从 2022 年年底美国回来后我一直强调我们要专注中国把中国市场做扎实的同时再开拓美国及海外市场。这两年很多中国创业公司都在积极出海大家选择了不同的路径和方式这里没有对错只是不同的商业选择和尝试。但我想聊一些对中美两个市场差异的认知本质上APAC 更接近中国欧洲等更接近美国这个题目很复杂从根源来看甚至可以从哲学体系和文明开始讲今天我尝试在技术市场方面做些总结分享我们在打造产品时如何去适应不同的市场。 一站式 vs 专业分工 这是感悟最深的一点。投资人经常问我们竞争对手是谁或者对标美国哪个公司。过去我们一直说我们对标 Snowflake or Databricks尤其是 Snowflake 上市后大部分投资人无法判断技术所以只能对标知名公司来理解。而很多时候客户的领导或者决策者也往往是靠这样的对比才能了解我们的能力和应用场景。但深入看一下就知道我们不一样更重要的是中美客户的需求非常不一样。 美国市场专业化分工非常细致且完善ETL 是 ETLDW 是 DWBI 是 BI基本上每个领域都有几个上市公司大家只要有差异化基本上都能赚钱而且卖得不便宜。这就是为什么之前美国市场讲“现代数据栈”/Modern Data Stack 非常有用一看就知道某个技术属于哪个部分而且各层之间的接口都相对规范。但显然在国内这个行不通技术栈的差异非常大还算好碰到个魔改的环境对接起来苦不堪言大量人力和时间被浪费掉。 而中国客户往往付一笔钱就想要全部最近有个头部公司给我们提的需求涵盖了 OLAP、ETL、联邦查询、实时查询等但问愿意付多少钱的时候却表示没多少钱——就如极客公园创始人张鹏之前说的“客户提的都是登月的需求但愿意付的只是一个同城快递的钱”——这是现状我们需要的是去适应而不是去改变我们当然想去改变但教育成本非常大需要一个渐进的过程当然我们也不是去妥协而是要找到平衡。 另外中美客户在人才分布上也有着巨大的差距。走出金融、通信、头部零售和制造业客户等行业中国的大部分其他行业客户都没有成建制的数据仓库或者大数据团队往往都是手撸代码直接完成各种分析报表和查询缺乏专业的分析人才和能力。这点对我们在过去几年打开非金融行业确实带来了很大的挑战。去年有客户突然和我说用你们的指标平台是不是可以不用先建立数据仓库回答“是”并验证之后整个合同和项目流程一下子加速了。据分析报告中国的云计算大致落后美国 7-8 年在整个 IT 方面也差不多。所以我们不能把美国市场的成功的架构、产品和工具直接在中国对标我们要设计符合中国客户和市场的产品。为客户提供一站式的数据和分析能力是未来非专业客户的刚需也是我们跨越鸿沟的核心要点。 人工智能 vs AI AI 很火两边都非常火但火的方向和内容非常不一样。除了大模型本身的卷以外在 AI 的应用、生态上两边有着不同的路线。从 Midjourney 和 Pika 等的火爆可以看到美国市场在不需要特别清晰的盈利模式上做着各种创新各种 SaaS 化的 AI 应用甚至这几天的 GPT Store 可以看到几百万的应用在非常短的时间内出现。有非常多有意思、解决小问题的应用出现甚至很多都能很快有收入来自良好的付费和订阅习惯。而国内目前能够看到的 AI 相关的应用和场景都还非常有限以及原始大部分能够看到听到的都来自文生图、文生视频等 2C 应用在工具类、企业服务类还非常的少。 图片来源ChatGPT 4 对比数据分析领域可以看到美国 ChatGPT 的数据分析插件本身已经做得非常好丢一个 CSV 就能给出非常好的分析和建议等且 GPT Store 上也有一大堆的插件尤其是一些 SaaS 供应商提供的数据应用。而国内大部分都还是 Text2SQL(NL2SQL) 类接触到非常多的团队都在努力地用 AI 写 SQL - 这当然很重要但往往受益的依然还是数据工程师、数据分析师还是“机器人打算盘”的感觉差了点意思。 管理 vs Operation 数据与分析从更大范围来说属于决策支持系统DSS, Decision Support System)来自维基百科的内容Beginning in about 1990, data warehousing and on-line analytical processing (OLAP) began broadening the realm of DSS. (Decision support System, Wikipedia)。而决策支持系统是帮助人类进行决策和管理的软件。 但软件仅仅只是工具是术这背后更重要的是管理的思想和方法论这是道和法。而这才是中美软件至少是管理软件最大的差异不同的人文环境不同的发展阶段造就了非常不同的管理理念和方法论。不管是生产系统的 ERP还是销售营销的 CRM再到基础的人力资源、薪资系统等等都有着非常大的不同。咨询大咖陈果曾经写文章说过他工作过的几家外企人力和薪资软件的基本理念和操作都非常一致即使是不同供应商提供的。据他总结是因为背后的管理理念一致似乎更多是按照同一种方法/handbook 来运营组织Operation完成工作从而达到目标。类似于一个只要按照飞行手册经过一定培训的飞行员就能驾驶飞机下面的手册在美国沃尔玛都可以买到。 图片来自网络 反观国内在几个群里讨论过最多的一个结论就是几乎每个稍微上点规模的公司都有着定制化 CRM 等各种软件的冲动但从来不考虑是否要付钱几乎每个老板、领导都有自己的“方法论”极难说服他们按某个“理论”行事而且都有着极强的管理欲望。 一个粗浅的理解是因为西方现代化公司运营已经近百年大量的实践和长期的积累已经逐渐形成体系而且大量的商学院、培训机构、咨询公司等在过去几十年改造了大量的公司培养了大量的专业管理人才。久而久之大家都习惯于使用一个体系的工具和流程来完成同样的工作所以可以看到美国的软件业非常发达几乎每一个细分的赛道都有非常多的上市公司或者独角兽。而国内改革开放也就这几十年整个社会和经济也还在剧烈的调整和变化中大量的企业业务虽然非常好但管理本身可能并是不特别出众往往都是“人”的能力更突出。故而对软件本身背后的管理方法论以及价值都非常模糊甚至低估。这也是今天企业服务行业面临的挑战。 买断式 vs 按需付费 订阅是最让人羡慕的商业模式。尤其是今年Instacart 上市的时候披露他们在 2020 年“向 Snowflake 支付了 1300 万美元”这个数字在 2021 年迅速增长至 2800 万美元到 2022 年更是为“基于云的数据仓库服务”支付了 5100 万美元。可时间来到 2023 年开销数字似乎出现了逆转Instacart 表示“我们预计全年将向 Snowflake 支付约 1500 万美元。”这是非常可怕的数字中国应该没有一个公司单年数据仓库能花费超过 5100 万人民币更不用说订阅制。 图片来自网络 这也是中国的商业环境决定的大部分客户都还不接受订阅还不接受按年付费的方式。不过最近几年好很多逐渐也在开始接受和尝试。而我们已经在国内走出一条独特的道路我们给大型金融机构等客户就是按年付费的方式且持续多年这在市场上极其稀缺。但我们的大型客户依然有着极强的议价能力我们无法按照美国的方式那么“容易”地扩容——这也是过去几年的实践和总结中国客户为了避免被卡脖子往往会对单产品做限制我们的实践证明只有不断提供不同的模块、产品等从而让用户产生新的需求进一步来进行扩容和增购。而不是幻想和美国一样的方式。 过去我们只看到 OLAP 的时候感觉很难突破往往就是在性能等技术方面进行迭代和 PK但最终其实没有客户愿意为这里的提升付费或者说付非常多的钱。而随着指标平台和 Kyligence Copilot 的推出我们发现其实只要做用户体验更好、更容易被用户理解和采用的产品就可以有巨大的机会。这也是我们最近积极推进各个产品和模块的原因我们需要用更丰富的菜单服务客户。期待我们有更多的创新和产品来满足客户各方面的需求当然一切都依然要围绕我们自己的核心竞争力去构建。 本地部署 vs Cloud 这是最让我们头疼的差异。国内的部署环境非常复杂我们大量的成本花费在对接各种系统和测试上。在美国基本上只有三家云基础设施大部分创业公司在很长一段时间都只支持一朵云例如 Snowflake 很长时间只支持 AWSDatabricks 是微软投资后花大力气帮助 Databricks 跑在 Azure 上。而国内我们要面对各种“稀奇古怪”的底座最近有个客户的 Spark 还是 2.x 的版本居然要我们修改我们的产品还好最终客户被我们说服把他们的 Spark 升级到 3.x 版本。如果每个这样的情况都需要定制、适配势必是要耗费大量的人力和物力的。 大模型时代我们突然发现又又又要对接无数“魔改”的版本幸好现在 GPU 还很贵幸好我们出了一个评测框架点击查看大模型在数据分析场景下的能力评测能够比较轻松地对接各种环境。但可以预期未来的微调服务将占据大量的工作。数据源 x 云平台 x 大模型 x BI工具 x 各种运维工具 x XXX —— 这是国内软件市场当前最大的隐形成本。我们既然不能改变这个实际状况那么我们如何 打造适应性更强的产品 额外的定制/适配工作向用户收费 这两点就变得非常重要。 从资本市场的分析我们也能看到在云计算这个市场中美的巨大差异。普遍来说中美在云计算市场的差距在7-8年左右。这是市场的事实我们需要考虑不同市场的差异来设计我们的产品和 GTM 策略。 图片来自网络 自研 vs SaaS Build vs Buy中国客户喜欢自己搞“In-house 实现”大量的程序员浪费在各种“魔改”中最近争论很激烈的 MySQL  是不是该跑在容器上就是一个代表。很多时候客户找我们往往都是他们自己搞不定的时候甚至会来“学习”我们产品后再回去进行自研。 据报道美国中小企业平均使用的 SaaS 服务超过 100 多个大型企业超过 200 多个。在美国今天一个创业团队构建自己的应用除了核心其余一定都是快速使用 SaaS 构建起来绝不浪费一个程序员。这也是美国各种 SaaS 工具活得很好的原因。 图片来自网络 细数一下我们自己也用了大概十几个 SaaS 产品但和美国比起来还是非常少。更别说我们的大型客户了受限于政策、采购以及各种理由中国客户大量采购纯 SaaS 的时代还需要几年时间。我们不能等待我们需要去适应这个市场但可以创新去思考如何提升这里的效率降低成本。我们最近的规划是尽可能地让用户通过 SaaS 或 PaaS 完成试用、PoC 等通过标准的 PoC SOP 来帮助快速完成评估通过脚本化的部署模式以天为单位向用户进行交付。 试想如果客户直接在 SaaS 上试用在 PaaS 中完成他们自己数据的 PoC签订合同后再部署到生产环境中间都用 ZenML 进行流转这样的效率提升不仅仅方便我们也将大大降低客户的工作量他们的工程师等会更愿意和我们合作。注意当我们强调“用户体验”的时候不是只是 GUI、运维、命令行、导入导出、文档甚至我们每个人的形象、态度、沟通和专业能力等等对客户来说都是一种“体验”。 领先的产品理念 极致的用户体验是战胜客户自研的唯一办法而不是黑科技或者厉害的算法要做到让客户彻底放弃自研的念头而不是激起他们深入研究技术实现的冲动 功能/性能 vs User Experience 国内用户强调功能美国用户强调用户体验国内用户喜欢贴身服务随叫随到美国用户喜欢自己捣鼓手册要求极高。这些差异在过去几年的实践中非常的明显。借用我们美国同事的原话“美国用户都是被宠坏了的富孩子咱们国内还在给个糖吃就很开心哪里管包装好不好看”。 这个差异非常的大以至于很多时候我们很分裂。本质上是两个社会的习惯、既有产品其他人如何服务客户和营商环境等造成的。由于美国大部分人的软件都已经非常成熟作为使用方的客户对相关内容是有默认要求的而且很高。比如英语美国员工曾经和我说过在美国一封 Chinglish 的邮件大家默认的认知就是诈骗、钓鱼的内容。直接在用户界面打出 Java 的 Stack 信息那就是产品不行。文档的操作过程和软件里不匹配比如前后顺序错了那就不愿意使用。 17/18 年的时候我们提出给美国客户去现场做 PoC客户会非常惊讶这不符合他们的习惯。美国用户的专业程度普遍较高一般喜欢根据手册等自己动手先验证即使做 PoC大部分也是自己完成。所以他们对手册、安全、可运维、上下游对接等等都有着很高的要求从他们角度其实这就是 common sense因为大部分软件都这么提供。这些标准化能力的缺失往往是我们过去错失很多好机会的原因。 而且由于美国的软件生态丰富他们更喜欢一个聚焦解决某一个问题的软件而不是什么都有的“怪物”。越聚焦、越简单也就越容易被整合。这就要求核心功能必须非常突出容易上手而提供丰富的非功能性能力来快速满足客户的场景需求可能是好几个工具的组合。更由于和世界一流的软件生态对接对用户体验的要求是极高的一群颜值极高的软件里突兀的出现一个歪瓜劣枣那肯定不受待见——这也是我们过去几年非常强调用户体验的原因幸运的是我们的产品最近在用户体验和设计上广受国内客户赞赏和美国同类软件比还有不少差距。 差异化不是都需要在功能、性能等层面体现。一个言简意赅的上手视频一封阅读感愉悦的手册一个友好的出错提示一个巧妙的设计思考都是吸引用户的极佳方式“汝果欲学诗工夫在诗外”。当大家都能提供一样的功能时用户体验将是真正的差异化竞争所在。就如我们去买车时大部分人不会去关注百米加速、发动机扭矩、功耗等等而更关心的是外观设计、内饰、操控、4S 店的服务态度、应急救援的效率等等。 图片来自网络 啥都做  vs API Economy 我们遇到过非常多的需要对接数据源、SaaS 服务的需求实践中一个非常大的区别是美国的大部分软件都有 API/SDK甚至很多现在都有非常好用的 webhook非常便于和各种其他系统互相整合。而且很多美国的创业公司在构建自己的应用的时候都会先去考虑有什么 SaaS 服务能够使用而这里的前提条件一定是有 API 可以被使用而且往往都是标准的 API 和使用方式甚至类似 Zapier 这样的服务非常的流行和重要。这就非常容易通过串联多个 SaaS 服务来完成而不需要什么都自己构建。 图片来自网络 我一直反对在我们自己产品里什么都去做最近一个案例是某个客户给我们提出了 N 个需求我说这至少是 5 种系统的需求从联邦查询、批流一体到实时分析等等甚至夸张到把 ETL 的部分需求也放进来了。这些本身其实都可以通过不同的工具链来完成的工作而很多客户却希望我们一个产品全能提供。 再举一个简单的例子很多客户、合作伙伴非常喜欢 Kyligence Zen但刚开始就给我们提需求一定要对接某些数据源他们非常难以接受把数据刷到 S3 上作为统一的交换界面。很多同学不理解为什么这些需求我一直压着不允许做一方面是因为这种需求只会让产品越做越重越来越定制化而更重要的是这里有无数的工具甚至 SaaS 服务可以完成比如最近我们需要把飞书多维表格导出到 S3对接多维表格这个需求一直有通过 Byzer 就可以完成也还有很多其他工具通过飞书的低代码平台我们已经实现了各种自动化推送、备份、报价/许可证的审批打通等等。利用好生态能力可以充分整合和构建更多场景并节省大量时间和资源。 清晰的系统边界是一个好的软件产品的基本要求以 S3类似 Kylin 时代的 Hive为输入界面以 SQL 为输出界面在这个范围内我们专注地将各种能力做到最好提升用户体验并且通过各种第三方工具链帮助客户完成相关的工作。 小结 随着中国人口结构的剧变2023年新生人口只有 902 万人口自然增长率为负的千分之-1.48)、现代化企业制度的建立、精细化运营的切实需求我们认为未来中国市场对企业软件的需求会非常旺盛企业大量增长的需求与短缺的劳动力之间的矛盾只有用软件和技术才能提升效率。但我们也相信国内的软件也将不再是全面复制西方的模式比如现代数据栈中那么清晰的分层将走出一条有自己特色的发展路径。 基于这些思考以及大量的交流对于中美甚至未来更大的全球市场从数据与分析行业乃至企业管理软件方向我们正在制定我们的路线规划随着 AI 的兴起我们发现这里有着巨大的潜力和市场结合我们的优势将能够更好地为中国、美国、乃至全球的客户分别提供适合当地市场的产品和解决方案并制定不同的 GTM 策略以更好地服务每个区域市场我们将在后续的篇幅中进一步阐释这些内容。 系列文章将在 Kyligence 公众号陆续发布请大家持续关注同时也欢迎大家在评论区分享你对中美企业服务市场的见解和看法点赞最高的评论有机会获得精美周边一份哦。 *上期中奖信息已在评论区公布详情请查看AI 时代的数据与分析市场变化 关于 Kyligence 跬智信息Kyligence由 Apache Kylin 创始团队于 2016 年创办是领先的大数据分析和指标平台供应商提供企业级 OLAP多维分析产品 Kyligence Enterprise 和一站式指标平台 Kyligence Zen为用户提供企业级的经营分析能力、决策支持系统及各种基于数据驱动的行业解决方案。 Kyligence 已服务中国、美国、欧洲及亚太的多个银行、证券、保险、制造、零售、医疗等行业客户包括建设银行、平安银行、浦发银行、北京银行、宁波银行、太平洋保险、中国银联、上汽、长安汽车、星巴克、安踏、李宁、阿斯利康、UBS、MetLife 等全球知名企业并和微软、亚马逊云科技、华为、安永、德勤等达成全球合作伙伴关系。Kyligence 获得来自红点、宽带资本、顺为资本、斯道资本、Coatue、浦银国际、中金资本、歌斐资产、国方资本等机构多次投资。
http://www.zqtcl.cn/news/784730/

相关文章:

  • 什么网站可以做线上邀请函大米网络营销推广方案
  • .net做网站实例 贴吧软件开发前景和发展
  • 合肥快速建站模板软件开发文档编制
  • 深圳免费网站设计平板做网站服务器
  • 注册或者浏览社交类网站时不恰当威宁做网站
  • 国外的电商网站有哪些方面沈阳医疗网站制作
  • 那个企业网站是用vue做的网站频道运营怎么做
  • 英语培训学校网站怎么做网站建建设公司和网络自建
  • 无法访问iis网站网站吸引客户
  • 郑州企业网站排名优化wordpress指定文章
  • 南京 网站开发宿州网站建设工作室
  • 龙海市城乡规划建设局网站河南郑州哪里可以做公司网站
  • 网站正能量晚上不用下载进入免费成都网站制作方案
  • 宝安做棋牌网站建设哪家公司便宜jsp网站搭建
  • 英文网站建设方法深圳信用网
  • ip查询网站用织梦后台修改网站logo
  • 网站编辑信息怎么做茶叶网站建设策划书ppt
  • 网站建设费摊销几年嵌入式软件开发用什么语言
  • 网站备案 后期商业设计网站
  • 网站负责人半身照国际公司和跨国公司
  • 网站的组成友情下载网站
  • 做视频课程网站中职网站建设
  • seo整站优化服务盗图来做网站
  • 网站服务器基本要素有哪些交易网站的建设规划
  • 网站开发源代码mvc山东网站推广
  • 深圳建网站兴田德润团队织梦的网站模板免费吗
  • 手机响应式网站怎么做图书馆建设网站注意点
  • 白云做网站要多少钱wordpress指定分类子类
  • 侧导航网站济南网上房地产
  • 做得比较好的公司网站自己可以学做网站吗