当前位置: 首页 > news >正文

自己建设一个网站zu97上海营销型网站建设

自己建设一个网站zu97,上海营销型网站建设,企业查询湖南,英文版网站建设的意义之前介绍了NodeRAG的节点类型和安装过程。 linux环境conda安装NodeRAG示例-CSDN博客 这里尝试从prompt代码角度分析NodeRAG如何将文档转化为节点、关系。 1 整体处理流程 NodeRAG定义了如下所示状态及处理流程。 # define the state to pipeline mapping self.state_pipelin…之前介绍了NodeRAG的节点类型和安装过程。 linux环境conda安装NodeRAG示例-CSDN博客 这里尝试从prompt代码角度分析NodeRAG如何将文档转化为节点、关系。 1 整体处理流程 NodeRAG定义了如下所示状态及处理流程。 # define the state to pipeline mapping self.state_pipeline_map {             State.DOCUMENT_PIPELINE: document_pipline,             State.TEXT_PIPELINE: text_pipline,             State.GRAPH_PIPELINE: Graph_pipeline,             State.ATTRIBUTE_PIPELINE: Attribution_generation_pipeline,             State.EMBEDDING_PIPELINE: Embedding_pipeline,             State.SUMMARY_PIPELINE: SummaryGeneration,             State.INSERT_TEXT: Insert_text,             State.HNSW_PIPELINE: HNSW_pipeline }          状态转化序列如下所示依次是INIT、DOCUMENT、TEXT、GRAPH、ATTRIBUTE、EMBEDDING、SUMMARY、INSERT、HNSW和FINISHED涵盖文档划分、图谱化、特征提取、向量化、内容摘要等。 # define the state sequence self.state_sequence [             State.INIT,             State.DOCUMENT_PIPELINE,             State.TEXT_PIPELINE,             State.GRAPH_PIPELINE,             State.ATTRIBUTE_PIPELINE,             State.EMBEDDING_PIPELINE,             State.SUMMARY_PIPELINE,             State.INSERT_TEXT,             State.HNSW_PIPELINE,             State.FINISHED ] https://github.com/Terry-Xu-666/NodeRAG/blob/main/NodeRAG/build/Node.py 这里重点关注文档切分、语义单元提取(摘要、实体、关系)、关联关系构建过程。 2 文档初步切分 State.DOCUMENT_PIPELINE: document_pipline环节 NodeRAG文档切分代码输入是文件读出的字符串块大小chunk_size对应token数实际切分end边界按token数计算。 from typing import List from .token_utils import get_token_counterclass SemanticTextSplitter:def __init__(self, chunk_size: int 1048, model_name: str gpt-4o-mini):Initialize the text splitter with chunk size and model name parameters.Args:chunk_size (int): Maximum number of tokens per chunkmodel_name (str): Model name for token countingself.chunk_size chunk_sizeself.token_counter get_token_counter(model_name)def split(self, text: str) - List[str]:Split text into chunks based on both token count and semantic boundaries.chunks []start 0text_len len(text)while start text_len:# add 4 times of chunk_size string to the start positionend start self.chunk_size * 4 # assume each token is 4 charactersif end text_len:end text_len# get the current text fragmentcurrent_chunk text[start:end]# if the token count of the current fragment exceeds the limit, need to find the split pointwhile self.token_counter(current_chunk) self.chunk_size and start end:# find semantic boundary in the current rangeboundaries [\n\n, \n, 。, ., , !, , ?, , ;]semantic_end endfor boundary in boundaries:boundary_pos current_chunk.rfind(boundary)if boundary_pos ! -1:semantic_end start boundary_pos len(boundary)break# if found semantic boundary, use it; otherwise, force truncation by characterif semantic_end end:end semantic_endelse:# 没找到合适的语义边界往回数token直到满足大小限制end start int(len(current_chunk) // 1.2)current_chunk text[start:end]# 添加处理好的文本块chunk current_chunk.strip()if chunk:chunks.append(chunk)# 移动到下一个起始位置start endreturn chunksNodeRAG/NodeRAG/utils/text_spliter.py at main · Terry-Xu-666/NodeRAG · GitHub 3 语义单元提取 State.TEXT_PIPELINE: text_pipline环节 将文本切分为块后进一步从块中提取语义单元每个单元包含对特定事件或活动的详细描述哦 1为每个语义单元提供总结同时保留与原始上下文相关的所有关键细节。 2直接从每个语义单元的原始文本中提取所有实体而不是从改写的总结中提取。 3从第2步中提取的实体中列出语义单元内的所有关系,其中关系类型可以是描述性句子。使用格式ENTITY_A,RELATION_TYPE,ENTITY_B请确保字符串中包含三个元素分别表示两个实体和关系类型。 因为文本被切分为一个个独立语义单元NodeRAG有可能解决了RAG语义切分问题 示例中text为文本切分后的块。 text_decomposition_prompt_Chinese 目标给定一个文本将该文本被划分为多个语义单元每个单元包含对特定事件或活动的详细描述。  执行以下任务 1.为每个语义单元提供总结同时保留与原始上下文相关的所有关键细节。 2.直接从每个语义单元的原始文本中提取所有实体而不是从改写的总结中提取。 3.从第2步中提取的实体中列出语义单元内的所有关系,其中关系类型可以是描述性句子。使用格式ENTITY_A,RELATION_TYPE,ENTITY_B请确保字符串中包含三个元素分别表示两个实体和关系类型。 要求 时间实体根据文本中提到的日期或时间的具体部分来表示时间实体不填补缺失部分。 每个语义单元应以一个字典表示,包含三个键:semantic_unit(每个语义单元的概括性总结)、entities(直接从每个语义单元的原始文本中提取的实体列表,实体名格式为大写)、relationships(描述性句子形式的提取关系字符串三元组列表。所有这些字典应存储在一个列表中以便管理和访问。 示例: 文本:2024年9月,艾米莉·罗伯茨博士前往巴黎参加国际可再生能源会议。在她的访问期间,她与几家欧洲公司探讨了合作并介绍了她在提高太阳能板效率方面的最新研究。与此同时,在世界的另一边,她的同事约翰·米勒博士在亚马逊雨林进行实地工作。他记录了几种新物种,并观察了森林砍伐对当地野生动物的影响。两位学者的工作在各自的领域内至关重要,对环境保护工作做出了重大贡献。 输出 [   {{     semantic_unit: 2024年9月,艾米莉·罗伯茨博士参加了在巴黎举行的国际可再生能源会议她在会上介绍了她关于太阳能板效率提高的研究并探讨了与欧洲公司的合作。,     entities: [艾米莉·罗伯茨博士, 2024-09, 巴黎, 国际可再生能源会议, 欧洲公司, 太阳能板效率],     relationships: [       艾米莉·罗伯茨博士, 参加了, 国际可再生能源会议,       艾米莉·罗伯茨博士, 探讨了合作, 欧洲公司,       艾米莉·罗伯茨博士, 介绍了研究, 太阳能板效率     ]   }},   {{     semantic_unit: 约翰·米勒博士在亚马逊雨林进行实地工作记录了几种新物种并观察了森林砍伐对当地野生动物的影响。,     entities: [约翰·米勒博士, 亚马逊雨林, 新物种, 森林砍伐, 当地野生动物],     relationships: [       约翰·米勒博士, 在, 亚马逊雨林进行实地工作,       约翰·米勒博士, 记录了, 新物种,       约翰·米勒博士, 观察了, 森林砍伐对当地野生动物的影响     ]   }},   {{     semantic_unit: 艾米莉·罗伯茨博士和约翰·米勒博士的工作在各自的领域内至关重要对环境保护工作做出了重大贡献。,     entities: [艾米莉·罗伯茨博士, 约翰·米勒博士, 环境保护],     relationships: [       艾米莉·罗伯茨博士, 贡献于, 环境保护,       约翰·米勒博士, 贡献于, 环境保护     ]   }} ] ########## 实际数据  ##########  文本:{text}  NodeRAG/NodeRAG/utils/prompt/text_decomposition.py at main · Terry-Xu-666/NodeRAG · GitHub 4 实体关系重建 State.GRAPH_PIPELINE: Graph_pipeline环节 之前抽取的关系relationship格式有可能是错误的需要重新按照实体A,关系类型,实体B重构。 prompt示例如下。 relationship_reconstraction_prompt_Chinese 你将获得一个包含实体之间关系的元组字符串。这些关系的格式是错误的需要被重新构建。正确的格式应为实体A,关系类型,实体B每个元组应包含三个元素两个实体和一个关系类型。你的任务是将每个关系重新构建为以下格式{{source: 实体A, relation: 关系类型, target: 实体B}}。请确保输出遵循此结构准确映射提供的实体和关系。 错误的关系元组:{relationship} https://github.com/Terry-Xu-666/NodeRAG/blob/main/NodeRAG/utils/prompt/relationship_reconstraction.py 除此之外Graph环节还包括基本图结构的重建具体参考以下链接。 https://github.com/Terry-Xu-666/NodeRAG/blob/main/NodeRAG/build/pipeline/graph_pipeline.py 5 关联特征总结 State.ATTRIBUTE_PIPELINE: Attribution_generation_pipeline环节 生成所给实体的简明总结涵盖其基本属性和重要相关关系。目的是生成属性节点为重要实体提供详细描述。entity是实体semantic_units是于entity相关联的语义单元描述relationships是实体与语义单元关联的相关关系。 attribute_generation_prompt_Chinese 生成所给实体的简明总结涵盖其基本属性和重要相关关系。该总结应像小说中的人物简介或产品描述一样提供引人入胜且精准的概览。确保输出只包含该实体的总结不包含任何额外的解释或元数据。字数不得超过2000字但如果输入材料有限可以少于2000字。重点在于通过流畅的叙述提炼出最重要的见解突出实体的核心特征及重要关系。 实体: {entity} 相关语义单元: {semantic_units} 相关关系: {relationships} 如果一个完整语义描述横跨多个节点这种方式能有效涵盖这种情况。 6 社区摘要总结 State.SUMMARY_PIPELINE: SummaryGeneration环节 使用社区聚类算法找到内容相关的节点并将这些节点内容组织成一个完整文本。从文本数据中提取不同类别的高层次信息例如概念、主题、相关理论、潜在影响和关键见解。每条信息应含一个简洁的标题和相应的描述以反映该聚类文本中的独特视角。基于每条信息构建高级元素节点包含从社区分析中提取的深层洞察。 community_summary_Chinese 你将收到来自同一聚类的一组文本数据。你的任务是从文本数据中提取不同类别的高层次信息例如概念、主题、相关理论、潜在影响和关键见解。每条信息应包含一个简洁的标题和相应的描述以反映该聚类文本中的独特视角。 请不要试图包含所有可能的信息相反选择在该聚类中最具重要性和多样性的元素。避免冗余信息——如果有高度相似的内容请将它们合并为一个综合条目。确保提取的高层次信息反映文本中的多维度内容提供全面的概览。 聚类文本数据 {content} 7 query实体提取 将用户问题query分解为一个 list其中每一项是句子的主要实体如关键名词或对象。 目的是利用提取实体在图中搜索相关节点。 decompos_query_Chinese 请将以下问题分解为一个 list其中每一项是句子的主要实体如关键名词或对象。如果你对用户的意图或相关领域知识有充分把握也可以包含密切相关的术语。如果不确定请仅从问题中提取实体。请尽量减少囊括常见的名词请将这些元素整合在一个单一的 list 中输出。 问题:{query} reference --- NodeRAG https://github.com/Terry-Xu-666/NodeRAG linux环境conda安装NodeRAG示例 https://blog.csdn.net/liliang199/article/details/151101894
http://www.zqtcl.cn/news/353431/

相关文章:

  • 常宁网站免费的ai作图软件
  • 网站建设讲师招聘如何做电商产品推广
  • 让百度收录网站网站开发流程进度表
  • 有几个网站能在百度做推广产品开发管理系统
  • 一个网站项目的价格表dz论坛seo
  • 企业做网站要多少钱哪个网站做动图
  • 知名企业网站例子4s店网站模板
  • 网站建设的信息安全防范技术初级买题做哪个网站好
  • 品牌营销网站建设东莞智通人才招聘网
  • 莒县建设局网站好的网站具备什么条件
  • 威海网站建设怎么样网上怎么推销自己的产品
  • 网站做SEO优化网站建设背景图片大小的修改
  • 看企业网站怎么做到百度秒收WordPress怎么可以上传图片
  • 欧洲手表网站简述jsp网站架构
  • 网站搜索排名优化软件flash xml网站
  • 匀贵网站建设亿级别网站开发注意
  • 怎样架设网站网站优化公司推荐
  • iis网站防盗链济宁官方网站
  • 网址查询地址查询站长之家在海南注册公司需要什么条件
  • 网站开发兼职平台网站建设需要多少钱小江网页设计
  • 最专业的网站建设收费2021没封的网站有人分享吗
  • 站酷设计网站官网入口文字设计wordpress是服务器吗
  • 律师手机网站模板天津做推广的公司
  • 西安市高新区建设规划局网站织梦小说网站模板下载地址
  • 网站开发简历 自我评价网页设计报告论文
  • 如何让网站不被收录不备案 国内网站
  • 站长之家域名买天猫店铺去哪里买
  • asp.net做的网站模板下载万网x3 wordpress
  • 设计网站设计目标天津市建设工程管理总队网站
  • 网站开始怎么做上海响应式网页建设