当前位置: 首页 > news >正文

超链接网站怎么做网站开发河南

超链接网站怎么做,网站开发河南,电力建设官方网站,常德地区网站建设文章目录 transformer介绍为什么处理长序列时会出现梯度消失和梯度爆炸的问题transformer为什么可以用在图像处理上#xff1f; transformer介绍 Transformer 是一种在深度学习中广泛使用的模型结构#xff0c;最初由 Vaswani 等人在 “Attention is All You Need” 一文中提… 文章目录 transformer介绍为什么处理长序列时会出现梯度消失和梯度爆炸的问题transformer为什么可以用在图像处理上 transformer介绍 Transformer 是一种在深度学习中广泛使用的模型结构最初由 Vaswani 等人在 “Attention is All You Need” 一文中提出主要应用于自然语言处理NLP领域为许多现代 NLP 模型提供了基础如 BERT、GPT 和T5 等。 在传统的序列处理模型如 RNN 循环神经网络或 LSTM 长短期记忆网络中对序列的处理是按照时间步骤来进行的这导致了处理长序列时会遇到的梯度消失和梯度爆炸问题。相比之下Transformer 则克服了这些问题通过使用了一种名为“自注意力机制Self-Attention Mechanism”或“Scaled Dot-Product Attention”的技术实现了对序列全局的捕捉从而可以并行处理整个序列大大提高了处理效率。 Transformer 模型主要由编码器Encoder和解码器Decoder两部分组成。编码器用于将输入的一系列符号如一个句子中的每个词转化为一系列连续的表示而解码器则将这些表示转化为输出序列如将源语言的句子翻译成目标语言的句子。 自注意力机制的主要思想是在生成每个符号的表示时都会考虑到输入序列中的所有符号再通过权重决定其最终的影响程度。这允许模型在生成一个符号的表示时能够参考到与它的上下文有关的所有信息使得 Transformer 模型能够有效地理解语义和句法结构提高模型的准确性。 举个例子 让我们把讲话的过程比作是一个舞蹈。你说一段话就像是你在跳一段舞蹈你每说一个词就像是你在做一个舞步。而别人听你说话理解你的意思就像是他们在看你跳舞并理解你的舞蹈。 但是这样有一个问题舞蹈的每一个舞步可能都和其他的舞步有关联。比如一个翻跟头可能会对应下一个跳跃动作或者一个转身可能会对应前面的的滑行动作。你跳舞的顺序很重要这个顺序就像是你说话的语义。 那么我们可以想象Transformer就像是一个能解析舞蹈的超级观众。这个超级观众不仅能看一遍舞蹈还能同时注意到每一个舞步的位置还能理解每一个舞步和其他所有舞步的联系。 这就是所谓的“自注意力机制”。通过这个机制Transformer可以理解语言中的顺序和联系就像我们理解舞蹈。 这样Transformer就能捕获到我们在说话或写文章中的意图并帮助我们完成翻译、问答甚至制作摘要等多种任务。 为什么处理长序列时会出现梯度消失和梯度爆炸的问题 在深度神经网络中久负盛名的问题就是梯度消失和梯度爆炸。这两个问题主要在循环神经网络RNN处理长序列时尤为突出。现在让我们详细解析一下这两个问题。 梯度消失在反向传播过程中当梯度被多次连续相乘时如果这些值小于1经过多次相乘之后梯度值会越来越接近于0这就是所谓的梯度消失问题。当梯度接近0时权重的更新将非常微小这会导致学习过程变慢权重几乎不再更新使得模型不能再进一步学习。梯度消失问题在处理长序列数据或深层网络结构时尤其严重因为这其中涉及到大量的相乘操作。 梯度爆炸与梯度消失相反梯度爆炸是指在反向传播过程中梯度的值经过多次相乘后变得异常大。这导致权重更新过快使得模型在学习过程中波动剧烈很难收敛或者甚至导致程序运行出错比如出现NaN值。同样这个问题在处理长序列数据或深层网络结构时尤其严重。 如何解决这两个问题呢一些常见的办法包括使用激活函数如ReLU、使用归一化技术如Batch Normalization或Layer Normalization、梯度裁剪以及改进网络结构如使用LSTMGated Recurrent Unit或者上文中提到的Transformer模型。 transformer为什么可以用在图像处理上 Transformer最初是被用于处理自然语言处理NLP任务的目的是捕捉句子中词语之间的长距离依赖关系。然而近年来我们发现这种方式也可以被用于图像处理任务。让我们简单聊聊原因。 首先图像其实也可以被看作是由多个像素点组成的序列每个像素点就好比一个词。Transformer可以捕捉这些像素点之间的复杂关系就像它可以理解句子中词语间的关联一样。 其次Transformer的自注意力机制使得它可以针对每个像素点查看其与图像中所有其他像素点的交互从而获取更全面的图片信息。这种全局的认知方式使得它可以捕捉到图像中的多尺度和长程依赖信息这在许多传统的卷积神经网络结构如CNN中是难以实现的。 最后Transformer更加灵活并且平行计算效率更高因为它处理数据的方式不依赖于数据的顺序和位置信息。 因此采用Transformer来处理图像任务已经显示出相当厉害的性能和潜力比如最近的ViTVision Transformer模型它在图像分类任务中取得了与当今最先进的卷积神经网络相媲美甚至超出的表现。
http://www.zqtcl.cn/news/590552/

相关文章:

  • 外贸网站建设制作wordpress管理员页面404
  • 北郊网站建设app网站开发哪里有
  • 像素人物制作网站网站开发的话术
  • 网站关键词怎么优化排名wordpress电子商城模板
  • 电子商务网站建设与维护能赚多少钱成交型网站建设
  • 到国外做网站网站是怎么回事中国一级建造师网官网
  • 惠州网站建设哪家好网站对图片优化
  • 酒店网站建设报价详情wordpress表单留言
  • 58同城做公司网站怎修改在线葡京在线葡京
  • 家纺网站模板wordpress折叠菜单
  • 建设信用中国网站站群系统破解版
  • 百度怎么投放广告凡科网站可以做seo优化
  • 医院网站建设 不足好的手机网站建设公司
  • 简历上作品展示网站链接怎么做wordpress的登陆地址修改密码
  • 深圳做响应式网站公司公司网站开发费用放在什么科目
  • 网站页面上的悬浮窗怎么做简单好看的版面设计图
  • 我要在58上面做网站硬件开发和嵌入式的区别
  • 西安网站推广慧创新手怎么开网店
  • 做羞羞事视频网站网站策划书基本项目
  • 对网站建设的维护优秀设计网站推荐
  • 口红机网站怎么做wordpress 搭建个人网站
  • 黄金网站房地产网站建设意义
  • 百度网站联盟公司做网站计入那个科目
  • 越秀电子商务网站建设国外的ui设计思想网站
  • 网站关键词优化公司网站建设完成确认书
  • 企业微信网站怎么建设山东有哪些网络公司
  • 做任务领佣金的网站源码页面设计参评
  • 淘宝联盟个人网站怎么做企业年度报告公示系统
  • 长沙企业网页设计哪家专业网站优化seo
  • 网站设计 西安漂亮企业网站源码