大连手机网站制作,佛山做营销型网站建设,阿里云服务器登录,说说wordpress[本节目标]
*掌握HashMap/TreeMap/HashSet/TreeSet的使用
*掌握了解HashSet和HashSet背后的哈希原理和简单的实现
1. 搜索树
1.1 概念
二叉搜索树又称二叉排序树,它或者是一颗空树,或者是具有以下性质的二叉树:
1.若它的左子树不为空#xff0c;则左子树上所有节点的值都…[本节目标]
*掌握HashMap/TreeMap/HashSet/TreeSet的使用
*掌握了解HashSet和HashSet背后的哈希原理和简单的实现
1. 搜索树
1.1 概念
二叉搜索树又称二叉排序树,它或者是一颗空树,或者是具有以下性质的二叉树:
1.若它的左子树不为空则左子树上所有节点的值都小于根节点的值 2.若它的右子树不为空则右子树上所有节点的值都大于根节点的值 3.它的左右子树也分别为二叉搜索树 1.2 操作-查找
代码思路:
先判断根节点,然后再分别判断左右子树. public class Demo50 {class Treenode{int val;Treenode right;Treenode left;public Treenode(int val){this.val val;}}public Treenode root;public boolean search(int key){
Treenode cur root;
while(cur ! null){if(cur.val key){return true;} else if (cur.val key) {cur cur.left;}else{cur cur.right;}
}
return false;}}1.3 操作-插入
代码思路:
先用while循环找到插入的位置,然后再用parent记录下来,再创建一个新的,接在记录parent的子类. public class Demo51 {class Treenode{int val;Treenode right;Treenode left;public Treenode(int val){this.val val;}}public Treenode root;public boolean insert(int val){
if(rootnull){Treenode root new Treenode(val);
}
Treenode cur root;
Treenode parent null;
while(cur ! null){if(cur.val val){parent cur;curcur.right;} else if (cur.val val) {parent cur;cur cur.left;}else{return false;}
}Treenode node new Treenode(val);
if(parent.valval){parent.right node;
}
else {parent.left node;
}
return true;}
}1.4 操作-删除(难点)
设待删除结点为 cur, 待删除结点的双亲结点为 parent
1. cur.left null 1). cur 是 root则 root cur.right 2). cur 不是 rootcur 是 parent.left则 parent.left cur.right 3). cur 不是 rootcur 是 parent.right则 parent.right cur.right 2. cur.right null 1). cur 是 root则 root cur.left 2). cur 不是 rootcur 是 parent.left则 parent.left cur.left 3). cur 不是 rootcur 是 parent.right则 parent.right cur.left 3. cur.left ! null cur.right ! null 1). 需要使用替换法进行删除即在它的右子树中寻找中序下的第一个结点(关键码最小)用它的值填补到被删除节点中再来处理该结点的删除问题 public class Demo52 {class Treenode{int val;Treenode right;Treenode left;}public Treenode root null;public void remove(int key) {Treenode partent null;Treenode cur root;while (cur ! null) {if (cur.val key) {partent cur;break;} else if (cur.val key) {partent cur;cur cur.right;} else {removenode(cur, partent);}}}public void removenode(Treenode cur,Treenode partent) {if (cur.left null) {if (root cur) {root cur.right;} else if (cur partent.left) {partent.left cur.right;} else {partent.right cur.right;}} else if (cur.right null) {if(root cur){root cur.left;}else if(cur partent.left){partent.left cur.left;}else{partent.right cur.left;}} else {//图片的解说对应这里
Treenode targetParent cur;
Treenode target cur.right;
while(target.left ! null){targetParent target;target target.left;
}
cur.val target.val;
if(targetParent.left target){targetParent.left target.right;
}
else{targetParent.right target.right;
}}}
} 1.6 性能分析
插入和删除操作都必须先查找查找效率代表了二叉搜索树中各个操作的性能。 对有n个结点的二叉搜索树若每个元素查找的概率相等则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数即结点越深则比较次数越多。 但对于同一个关键码集合如果各关键码插入的次序不同可能得到不同结构的二叉搜索树
1.7 和集合类的关系
TreeMap 和 TreeSet 即 java 中利用搜索树实现的 Map 和 Set实际上用的是红黑树而红黑树是一棵近似平衡的二叉搜索树即在二叉搜索树的基础之上 颜色以及红黑树性质验证关于红黑树的内容后序再进行讲解。
2. 搜索
2.1 概念即场景
Map和set是一种专门用来进行搜索的容器或者数据结构其搜索的效率与其具体的实例化子类有关。以前常见的搜索方式有
1. 直接遍历时间复杂度为O(N)元素如果比较多效率会非常慢 2. 二分查找时间复杂度为 ,但搜索前必须要求序列是有序的 上述排序比较适合静态类型的查找即一般不会对区间进行插入和删除操作了而现实中的查找比如 1. 根据姓名查询考试成绩 2. 通讯录即根据姓名查询联系方式 3. 不重复集合即需要先搜索关键字是否已经在集合中 可能在查找时进行一些插入和删除的操作即动态查找那上述两种方式就不太适合了本节介绍的Map和Set是一种适合动态查找的集合容器。
2.2 模型
一般把搜索的数据称为关键字Key和关键字对应的称为值Value将其称之为Key-value的键值对所以模型会有两种 纯 key 模型比如 有一个英文词典快速查找一个单词是否在词典中 快速查找某个名字在不在通讯录中 2. Key-Value 模型比如 统计文件中每个单词出现的次数统计结果是每个单词都有与其对应的次数单词单词出现的次数 梁山好汉的江湖绰号每个好汉都有自己的江湖绰号
而Map中存储的就是key-value的键值对Set中只存储了Key。
3. Map的使用
3.1 关于Map的说明
Map是一个接口类该类没有继承自Collection该类中存储的是K,V结构的键值对并且K一定是唯一的不能重复。
3.2 关于Map.EntryK,V的说明
Map.EntryK, V 是Map内部实现的用来存放key, value键值对映射关系的内部类该内部类中主要提供了key, value的获取value的设置以及Key的比较方式。 解释例子:map.put(hello,5),就是对应Map.EntryK, V,entry是Map里面的一个接口,然后把K,V看成了一个整体,然后Set包含了很多个map. 注意Map.EntryK,V并没有提供设置Key的方法
3.3 Map的常用方法 V get(Object key) 返回 key 对应的 value V getOrDefault(Object key, V defaultValue) 返回 key 对应的 valuekey 不存在返回默认值 V put(K key, V value) 设置 key 对应的 value V remove(Object key) 删除 key 对应的映射关系 SetK keySet() 返回所有 key 的不重复集合 CollectionV values() 返回所有 value 的可重复集合 SetMap.EntryK, V entrySet() 返回所有的 key-value 映射关系 boolean containsKey(Object key) 判断是否包含 key boolean containsValue(Object value) 判断是否包含 value 注意 1. Map是一个接口不能直接实例化对象如果要实例化对象只能实例化其实现类TreeMap或者HashMap 2. Map中存放键值对的Key是唯一的value是可以重复的 3. 在TreeMap中插入键值对时key不能为空否则就会抛NullPointerException异常value可以为空。但是HashMap的key和value都可以为空。 4. Map中的Key可以全部分离出来存储到Set中来进行访问(因为Key不能重复)。 5. Map中的value可以全部分离出来存储在Collection的任何一个子集合中(value可能有重复)。 6. Map中键值对的Key不能直接修改value可以修改如果要修改key只能先将该key删除掉然后再来进行重新插入。 7. TreeMap和HashMap的区别(最后会讲到) Map示例:
import java.util.Arrays;
import java.util.TreeMap;
import java.util.Map;public class Mapdemo1 {public static void main(String[] args) {MapString, String treeMap new TreeMap();treeMap.put(林冲, 豹子头);treeMap.put(鲁智深, 花和尚);treeMap.put(武松, 行者);treeMap.put(宋江, 及时雨);String str treeMap.put(李逵, 黑旋风);System.out.println(treeMap.size());System.out.println(treeMap);System.out.println(str);// put(key,value): 注意key不能为空但是value可以为空// key如果为空会抛出空指针异常//treeMap.put(null, 花名); 这里会抛出异常treeMap.put(无名, null);System.out.println(treeMap.size());// put(key, value):// 如果key存在会使用value替换原来key所对应的value返回旧valuetreeMap.put(李逵, 铁牛);System.out.println(treeMap);// get(key): 返回key所对应的value// 如果key存在返回key所对应的value// 如果key不存在返回nullSystem.out.println(treeMap.get(鲁智深));System.out.println(treeMap.get(史进));System.out.println(***************************);//GetOrDefault(): 如果key存在返回与key所对应的value如果key不存在返回一个默认值System.out.println(treeMap.getOrDefault(李逵, 铁牛));System.out.println(treeMap.getOrDefault(史进, 九纹龙));//containKey(key)检测key是否包含在Map中时间复杂度O(logN)// 按照红黑树的性质来进行查找// 找到返回true否则返回falseSystem.out.println(treeMap.containsKey(林冲));System.out.println(treeMap.containsKey(史进));// 打印所有的key// keySet是将map中的key防止在Set中返回的for(String s : treeMap.keySet()){System.out.print(s );}System.out.println();System.out.println(********************************);// 打印所有的value// values()是将map中的value放在collect的一个集合中返回的for(String s : treeMap.values()){System.out.print(s );}System.out.println();// 打印所有的键值对// entrySet(): 将Map中的键值对放在Set中返回了for(Map.EntryString, String entry : treeMap.entrySet()){System.out.println(entry.getKey() --- entry.getValue());}System.out.println();}}
4. Set的使用
Set与Map主要的不同有两点Set是继承自Collection的接口类Set中只存储了Key。
4.1 Set常见的方法和使用 方法 解释 boolean add(E e) 添加元素但重复元素不会被添加成功 void clear() 清空集合 boolean contains(Object o) 判断 o 是否在集合中 IteratorE iterator() 返回迭代器 boolean remove(Object o) 删除集合中的 o int size() 返回set中元素的个数 boolean isEmpty() 检测set是否为空空返回true否则返回false Object[] toArray() 将set中的元素转换为数组返回 boolean containsAll(Collection? c) 集合c中的元素是否在set中全部存在是返回true否则返回false boolean addAll(Collection? extends E c) 将集合c中的元素添加到set中可以达到去重的效果 注意: 1. Set是继承自Collection的一个接口类 2. Set中只存储了key并且要求key一定要唯一 3. TreeSet的底层是使用Map来实现的其使用key与Object的一个默认对象作为键值对插入到Map中的 4. Set最大的功能就是对集合中的元素进行去重 5. 实现Set接口的常用类有TreeSet和HashSet还有一个LinkedHashSetLinkedHashSet是在HashSet的基础上维护了一个双向链表来记录元素的插入次序。 6. Set中的Key不能修改如果要修改先将原来的删除掉然后再重新插入 7. TreeSet中不能插入null的keyHashSet可以。 8. TreeSet和HashSet的区别【HashSet在最后会讲到】
Set示例
import java.util.TreeSet;
import java.util.Iterator;
import java.util.Set;
public class SetDemo1 {public static void main(String[] args) {SetString s new TreeSet();
// add(key): 如果key不存在则插入返回ture
// 如果key存在返回falseboolean isIn s.add(apple);s.add(orange);s.add(peach);s.add(banana);System.out.println(s.size());System.out.println(s);isIn s.add(apple);
// add(key): key如果是空抛出空指针异常
//s.add(null);
// contains(key): 如果key存在返回true否则返回falseSystem.out.println(s.contains(apple));System.out.println(s.contains(watermelen));
// remove(key): key存在删除成功返回true
// key不存在删除失败返回false
// key为空抛出空指针异常s.remove(apple);System.out.println(s);System.out.println(********);System.out.println(s.remove(watermelen));System.out.println(s);IteratorString it s.iterator();while (it.hasNext()) {System.out.print(it.next() );}System.out.println();}
}
5. 哈希表
5.1 概念
顺序结构以及平衡树中元素关键码与其存储位置之间没有对应的关系因此在查找一个元素时必须要经过关键码的多次比较。顺序查找时间复杂度为O(N)平衡树中为树的高度即O( )搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法可以不经过任何比较一次直接从表中得到要搜索的元素。 如果构造一种存储结构通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系那么在查找时通过该函数可以很快找到该元素。
当向该结构中 插入元素: 据待插入元素的关键码以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素:
对元素的关键码进行同样的计算把求得的函数值当做元素的存储位置在结构中按此位置取元素比较若关键码相等则搜索成功. 该方式即为哈希(散列)方法哈希方法中使用的转换函数称为哈希(散列)函数构造出来的结构称为哈希表(HashTable)(或者称散列表)
例如数据集合{176459} 哈希函数设置为hash(key) key % capacity; capacity为存储元素底层空间总的大小。 用该方法进行搜索不必进行多次关键码的比较因此搜索的速度比较快 问题按照上述哈希方式向集合中插入元素44,就会出现问题.
接下来我们就来讨论这些问题.
5.2 冲突-概念
对于两个数据元素的关键字 和 (i ! j)有 ! 但有Hash( ) Hash( )即不同关键字通过相同哈希哈数计算出相同的哈希地址该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
5.3 冲突-避免
首先我们需要明确一点由于我们哈希表底层数组的容量往往是小于实际要存储的关键字的数量的这就导致一个问题冲突的发生是必然的但我们能做的应该是尽量的降低冲突率.
5.4 冲突-避免-哈希函数升级
引起哈希冲突的一个原因可能是哈希函数设计不够合理。 哈希函数设计原则
*哈希函数的定义域必须包括需要存储的全部关键码而如果散列表允许有m个地址时其值域必须在0到m-1之间
*哈希函数计算出来的地址能均匀分布在整个空间中
*哈希函数应该比较简单常见哈希函数
1.直接定制法(常用)
取关键字的某个线性函数为散列地址HashKey A*Key B 优点简单、均匀 缺点需要事先知道关键字的分布情况 使用场景适合查找比较小且连续的情况
2.除留余数法(常用)
设散列表中允许的地址数为m取一个不大于m但最接近或者等于m的质数p作为除数按照哈希函数Hash(key) key% p(pm),将关键码转换成哈希地址
3. 平方取中法--(了解) 假设关键字为1234对它平方就是1522756抽取中间的3位227作为哈希地址 再比如关键字为4321对它平方就是18671041抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合不知道关键字的分布而位数又不是很大的情况
4. 折叠法--(了解)
折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些)然后将这几部分叠加求和并按散列表表长取后几位作为散列地址。 折叠法适合事先不需要知道关键字的分布适合关键字位数比较多的情况
5. 随机数法--(了解) 选择一个随机函数取关键字的随机函数值为它的哈希地址即H(key) random(key),其中random为随机数 函数。通常应用于关键字长度不等时采用此法
6. 数学分析法--(了解) 设有n个d位数每一位可能有r种不同的符号这r种不同的符号在各位上出现的频率不一定相同可能在某些位上分布比较均匀每种符号出现的机会均等在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小选择其中各种符号分布均匀的若干位作为散列地址。
数字分析法通常适合处理关键字位数比较大的情况如果事先知道关键字的分布且关键字的若干位分布较均匀的情况
综上
注意哈希函数设计的越精妙产生哈希冲突的可能性就越低但是无法避免哈希冲突 5.5 冲突-避免-负载因子调节(重点) 所以当冲突率达到一个无法忍受的程度时我们需要通过降低负载因子来变相的降低冲突率。 已知哈希表中已有的关键字个数是不可变的那我们能调整的就只有哈希表中的数组的大小.
5.6 冲突-解决
解决哈希冲突两种常见的方法是闭散列和开散列
5.7 冲突-解决-闭散型
闭散列也叫开放定址法当发生哈希冲突时如果哈希表未被装满说明在哈希表中必然还有空位置那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢
1. 线性探测 比如上面的场景现在需要插入元素44先通过哈希函数计算哈希地址下标为4因此44理论上应该插在该位置但是该位置已经放了值为4的元素即发生哈希冲突。 线性探测从发生冲突的位置开始依次向后探测直到寻找到下一个空位置为止。 插入: 通过哈希函数获取待插入元素在哈希表中的位置 如果该位置中没有元素则直接插入新元素如果该位置中有元素发生哈希冲突使用线性探测找到下一个空位置插入新元素 采用闭散列处理哈希冲突时不能随便物理删除哈希表中已有的元素若直接删除元素会影响其他 元素的搜索。比如删除元素4如果直接删除掉44查找起来可能会受影响。因此线性探测采用标 记的伪删除法来删除一个元素。
2.二次探测
线性探测的缺陷是产生冲突的数据堆积在一块这与其找下一个空位置有关系因为找空位置的方式就是挨着往后逐个去找因此二次探测为了避免该问题找下一个空位置的方法为 ( )% m, 或者H1 (H - i*i )% m。其中i 1,2,3… 是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置m是表的大小。 对于2.1中如果要插入44产生冲突使用解决后的情况为 这就是一次和二次的区别
研究表明当表的长度为质数且表装载因子a不超过0.5时新的表项一定能够插入而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置就不会存在表满的问题。在搜索时可以不考虑表装满的情况但在插入时必须确保表的装载因子a不超过0.5如果超出必须考虑增容。 因此比散列最大的缺陷就是空间利用率比较低这也是哈希的缺陷。
5.8 冲突-解决-开散列/哈希桶重点)
开散列法又叫链地址法(开链法)首先对关键码集合用散列函数计算散列地址具有相同地址的关键码归于同一子集合每一个子集合称为一个桶各个桶中的元素通过一个单链表链接起来各链表的头结点存储在哈希表中。 从上图可以看出开散列中每个桶中放的都是发生哈希冲突的元素。 开散列可以认为是把一个在大集合中的搜索问题转化为在小集合中做搜索了。
5.9 冲突严重时的解决办法
刚才我们提到了哈希桶其实可以看作将大集合的搜索问题转化为小集合的搜索问题了那如果冲突严重就意味着小集合的搜索性能其实也时不佳的这个时候我们就可以将这个所谓的小集合搜索问题继续进行转化例如 1. 每个桶的背后是另一个哈希表 2. 每个桶的背后是一棵搜索树
演示(创建桶):
class MHashMap{final static double Loodfactor 0.75;static class Node{int k;int val;Node next;public Node(int k, int val) {this.k k;this.val val;}}Node[] array ;int size;public MHashMap() {array new Node[10];}public void put(int key, int val){int index key % array.length;//遍历index下标的key,看是否存在key,如果存在则更新val;Node cur array[index];while(cur ! null){if(key cur.val){cur.val val;return;}cur cur.next;}Node node new Node(key,val);node.next array[index];array[index] node;size;if(doLoodfactor()Loodfactor){}}public double doLoodfactor(){return size*1.0/ array.length;}public void resize(){Node[] newarray new Node[2* array.length];for (int i 0; i array.length ; i) {Node cur array[i];while(cur ! null){int newIndex cur.k% newarray.length;Node node new Node(cur.k, cur.val);node.next newarray[newIndex];newarray[newIndex] node;cur cur.next;}}array newarray;}public int get(int key){int index key % array.length;//遍历index下标的key,看是否存在key,如果存在则更新val;Node cur array[index];while(cur ! null){if(cur.k key){return cur.val;}cur cur.next;}return -1;}
}
虽然哈希表一直在和冲突做斗争但在实际使用过程中我们认为哈希表的冲突率是不高的冲突个数是可控的 也就是每个桶中的链表的长度是一个常数所以通常意义下我们认为哈希表的插入/删除/查找时间复杂度是O(1).
6. 和Java类的关系
1. HashMap 和 HashSet 即 java 中利用哈希表实现的 Map 和 Set 2. java 中使用的是哈希桶方式解决冲突的 3. java 会在冲突链表长度大于一定阈值后将链表转变为搜索树红黑树 4. java 中计算哈希值实际上是调用的类的 hashCode 方法进行 key 的相等性比较是调用 key 的 equals 方法。所以如果要用自定义类作为 HashMap 的 key 或者 HashSet 的值必须覆写 hashCode 和 equals 方法而且要做到 equals 相等的对象hashCode 一定是一致的。